International Journal of Image and Graphics最新文献

筛选
英文 中文
Design and Implementation of Novel Hybrid and Multiscale- Assisted CNN and ResNet Using Heuristic Advancement of Adaptive Deep Segmentation for Iris Recognition 利用启发式自适应深度分割技术,设计并实现新型混合与多萼片辅助 CNN 和 ResNet,用于虹膜识别
IF 1.6
International Journal of Image and Graphics Pub Date : 2024-01-03 DOI: 10.1142/s0219467825500524
G. Babu, P. A. Khayum
{"title":"Design and Implementation of Novel Hybrid and Multiscale- Assisted CNN and ResNet Using Heuristic Advancement of Adaptive Deep Segmentation for Iris Recognition","authors":"G. Babu, P. A. Khayum","doi":"10.1142/s0219467825500524","DOIUrl":"https://doi.org/10.1142/s0219467825500524","url":null,"abstract":"Due to its significant applications in security, the iris recognition process has been considered as the most active research area over the last few decades. In general, the iris recognition framework has been crucially utilized for various security applications because it includes a set of features as well as does not alter its character according to the time. In recent times, emerging deep learning techniques have attained huge success, particularly in the field of the iris recognition framework model. Moreover, in considering the field of iris recognition, there is no possibility for the remarkable capability of the deep learning model as well as to attain superior performance. To handle the issues in the conventional model of iris recognition, a novel heuristic-aided deep learning framework has been implemented for recognizing the iris system. Initially, the required source iris images are gathered from the data sources. It is then followed by the pre-processing stage, where the pre-processed image is obtained. Consequently, the image segmentation process is carried out by Adaptive Deeplabv3+layers, in which the parameters are optimized using the Modified Weighted Flow Direction Algorithm (MWFDA). Finally, the iris recognition is accomplished by hybrid Hybridization of Multiscale Dilated-Assisted Learning (MDAL) that will be composed of both a Convolutional Neural Network (CNN) and a Residual Network (ResNet). To achieve optimal recognition results, the parameters in CNN and ResNet are tuned optimally by using MWFDA. The experimental results are estimated with the help of distinct measures. Contrary to conventional methods, the empirical results prove that the recommended model achieves the desired value to enhance the recognition performance.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":"29 20","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139389203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dwarf Mongoose Optimization with Transfer Learning-Based Fish Behavior Classification Model 利用基于迁移学习的鱼类行为分类模型优化矮獴
IF 1.6
International Journal of Image and Graphics Pub Date : 2023-12-30 DOI: 10.1142/s0219467825500536
B. Samhitha, R. Subhashini
{"title":"Dwarf Mongoose Optimization with Transfer Learning-Based Fish Behavior Classification Model","authors":"B. Samhitha, R. Subhashini","doi":"10.1142/s0219467825500536","DOIUrl":"https://doi.org/10.1142/s0219467825500536","url":null,"abstract":"Behavioral monitoring can be used to monitor aquatic ecosystems and water quality over time. Using precise and rapid fish performance detection, fishermen may make educated management decisions on recirculating aquaculture systems while decreasing labor. Sensors and procedures for recognizing fish behavior are often developed and prepared by researchers in big numbers. Deep learning (DL) techniques have revolutionized the capability to automatically analyze videos, which were utilized for behavior analysis, live fish detection, biomass estimation, water quality monitoring, and species classification. The benefit of DL is that it could automatically study the extraction of image features and reveals brilliant performance in identifying sequential actions. This paper focuses on the design of Dwarf Mongoose Optimization with Transfer Learning-based fish behavior classification (DMOTLB-FBC) model. The presented DMOTLB-FBC technique intends to effectively monitor and classify fish behaviors. Initially, the DMOTLB-FBC technique follows Gaussian filtering (GFI) technique for noise removal process. Besides, a transfer learning (TL)-based neural architectural search network (NASNet) model is used to produce a collection of feature vectors. For fish behavior classification, graph convolution network (GCN) model is employed in this work. To improve the fish behavior classification results of the DMOTLB-FBC technique, the DWO algorithm is applied as a hyperparameter optimizer of the GCN model. The experimentation analysis of the DMOTLB-FBC technique is tested on fish video dataset and the widespread comparison study reported the enhancements of the DMOTLB-FBC technique over other recent approaches.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":" 14","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139141273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MRCNet: Multi-Level Residual Connectivity Network for Image Classification MRCNet:用于图像分类的多级残差连接网络
IF 1.6
International Journal of Image and Graphics Pub Date : 2023-12-30 DOI: 10.1142/s0219467825500512
Mengting Ye, Zhenxue Chen, Yixin Guo, Kaili Yu, Longcheng Liu
{"title":"MRCNet: Multi-Level Residual Connectivity Network for Image Classification","authors":"Mengting Ye, Zhenxue Chen, Yixin Guo, Kaili Yu, Longcheng Liu","doi":"10.1142/s0219467825500512","DOIUrl":"https://doi.org/10.1142/s0219467825500512","url":null,"abstract":"Computer vision obtains object and environment information by simulating human visual senses and borrowing human sensory activity. As one of the main tasks of computer vision, image classification can be used not only for face recognition, traffic scene recognition, image retrieval, and automatic photo categorization but also as a theoretical basis for target detection and image segmentation. In this paper, we use the existing CNN architecture network-ConvNeXt. By adapting and modifying the residual connectivity and convolutional structure of the network, we achieve a balance between classification accuracy and inference speed. These modifications are able to reduce both computation and memory consumption while keeping accuracy largely unchanged, thus better facilitating network lightweighting.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":" 9","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139141851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-disease Classification of Mango Tree Using Meta-heuristic-based Weighted Feature Selection and LSTM Model 使用基于元启发式的加权特征选择和 LSTM 模型对芒果树进行多病分类
IF 1.6
International Journal of Image and Graphics Pub Date : 2023-12-28 DOI: 10.1142/s0219467824500396
S. Veling, T. B. Mohite-Patil
{"title":"Multi-disease Classification of Mango Tree Using Meta-heuristic-based Weighted Feature Selection and LSTM Model","authors":"S. Veling, T. B. Mohite-Patil","doi":"10.1142/s0219467824500396","DOIUrl":"https://doi.org/10.1142/s0219467824500396","url":null,"abstract":"Global food security can be influenced by the diseases in crop plants as several diseases straightforwardly influence the quality of the grains, vegetables, fruits, etc., which also results in affecting of agricultural productivity. Like other plants, the mango tree is also affected by several diseases, and also the identification of multi-disease classification with a single leaf is more complex, and also it is impossible to detect diseases with bare eyes. Based on the other plants, the mango tree is also affected by various diseases, which is more difficult to detect the disorders with bare eyes. It is error-prone, inconsistent, and unreliable. Here, the mango trees are affected during the production, and also affect the plant health regarding multi-diseases. When the plants are affected by the diseases, it may cause fewer amounts of productivity, as a result, impacting the economy. However, it is more critical to detect plant diseases with the large varieties of trees and plants. Various research tasks on deep learning approaches focus on identifying the diseases in plants including leaves and fruits. Thus, the main objective of this paper is to implement an effective and appropriate technique for diagnosing mango tree diseases and their symptoms through fruit and leaf images, and thus, there is a need for an appropriate system for cost-effective and early solutions to this problem. Hence, the main intention of this work is to implement an efficient and suitable technique for diagnosing mango tree diseases and also identify the symptoms through fruit and leaf images. Intending to overcome the existing challenges, there is a need for an appropriate system for achieving cost-effectiveness and also creating an early solution to resolve this problem. This paper intends to present novel deep learning models for mango tree multi-disease classification. Initially, the data collection is done for gathering the diseased parts of the mango tree in terms of leaf and fruit images. Then, the contrast enhancement of the images is performed by the “Contrast-Limited Adaptive Histogram Equalization (CLAHE)”. For the deep feature extraction of leaf images, and fruit images, Convolutional Neural Network (CNN) is employed, and the features from both inputs are concatenated for further processing. Further, the weighted feature selection is adopted for selecting the most significant features by the Adaptive Squirrel-Grey Wolf Search Optimization (AS-GWSO). Enhanced “Long Short Term Memory (LSTM)” is applied in the classification part with parameter optimization using the same AS-GWSO for enhancing classification accuracy. At last, the results of the designed system on various mango tree diseases verify that the designed approach has yielded the highest accuracy by evaluating conventional approaches. Therefore, it would also alleviate and treat the affected mango leaf diseases accurately.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":"78 S19","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139151925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feature Matching-Based Undersea Panoramic Image Stitching in VR Animation 基于特征匹配的 VR 动画中的海底全景图像拼接
IF 1.6
International Journal of Image and Graphics Pub Date : 2023-12-28 DOI: 10.1142/s0219467825500482
Yawen Tang, Jianhong Ren
{"title":"Feature Matching-Based Undersea Panoramic Image Stitching in VR Animation","authors":"Yawen Tang, Jianhong Ren","doi":"10.1142/s0219467825500482","DOIUrl":"https://doi.org/10.1142/s0219467825500482","url":null,"abstract":"The continuous development of virtual reality animation has brought people a new viewing experience. However, there is still a large research space for the construction of virtual scenes. Underwater scenes are complex and diverse, and to obtain more realistic virtual scenes, it is necessary to use video panoramic images as reference modeling in advance. To this end, the study uses the [Formula: see text]-means clustering method to extract key frames from underwater video, and adaptively adjusts the number of clusters to improve the extraction algorithm according to the differences in features. To address the problems of low contrast and severe blurring in underwater images, the study uses an improved non-local a priori recovery method to achieve the recovery process of underwater images. Finally, the final underwater panoramic image is obtained by fading-out image fusion and frame to stitching image synthesis strategy. The experimental analysis shows that the runtime of Model 1 is 21.46[Formula: see text]s, the root mean square error value is 1.89, the structural similarity value is 0.9678, and the average gradient value is 12.59. It can achieve efficient and high-quality panoramic image generation.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":"49 7","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139151142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-Time Spatial-Temporal Depth Separable CNN for Multi-Functional Crowd Analysis in Videos 用于视频中多功能人群分析的实时时空深度可分离 CNN
IF 1.6
International Journal of Image and Graphics Pub Date : 2023-11-20 DOI: 10.1142/s0219467825500470
Santosh Kumar Tripathy, Poonkuntran Shanmugam
{"title":"Real-Time Spatial-Temporal Depth Separable CNN for Multi-Functional Crowd Analysis in Videos","authors":"Santosh Kumar Tripathy, Poonkuntran Shanmugam","doi":"10.1142/s0219467825500470","DOIUrl":"https://doi.org/10.1142/s0219467825500470","url":null,"abstract":"Crowd behavior prediction (CBP) and crowd counting (CC) are the essential functions of vision-based crowd analysis (CA), which play a crucial role in controlling crowd disasters. The CA using different models for the CBP and the CC will increase computational overheads and have synchronization issues. The state-of-the-art approaches utilized deep convolutional architectures to exploit spatial-temporal features to accomplish the objective, but such models suffer from computational complexities during convolution operations. Thus, to sort out the issues as mentioned earlier, this paper develops a single deep model which performs two functionalities of CA: CBP and CC. The proposed model uses multilayers of depth-wise separable CNN (DSCNN) to extract fine-grained spatial-temporal features from the scene. The DSCNN can minimize the number of matrix multiplications during convolution operation compared to traditional CNN. Further, the existing datasets are available to accomplish the single functionality of CA. In contrast, the proposed model needs a dual-tasking CA dataset which should provide the ground-truth labels for CBP and CC. Thus, a dual functionality CA dataset is prepared using a benchmark crowd behavior dataset, i.e. MED. Around 41[Formula: see text]000 frames have been manually annotated to obtain ground-truth crowd count values. This paper also demonstrates an experiment on the proposed multi-functional dataset and outperforms the state-of-the-art methods regarding several performance metrics. In addition, the proposed model processes each test frame at 3.40 milliseconds, and thus is easily applicable in real-time.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":"61 3","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139255084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CNN-LandCoverNet: An Effective Framework of Land Cover Classification Using Hybrid Metaheuristic-Aided Ensemble-Based Convolutional Neural Network CNN-LandCoverNet:使用混合元启发式辅助基于集合的卷积神经网络进行土地覆被分类的有效框架
IF 1.6
International Journal of Image and Graphics Pub Date : 2023-11-18 DOI: 10.1142/s021946782550038x
Samrajam Jyothula, S. Chandrasekhar
{"title":"CNN-LandCoverNet: An Effective Framework of Land Cover Classification Using Hybrid Metaheuristic-Aided Ensemble-Based Convolutional Neural Network","authors":"Samrajam Jyothula, S. Chandrasekhar","doi":"10.1142/s021946782550038x","DOIUrl":"https://doi.org/10.1142/s021946782550038x","url":null,"abstract":"Land cover (LC) categorization is considered a necessary task of intelligent interpretation technology for remote sensing imagery that is intended to categorize every pixel to perform the predefined LC classification. Land Use and Land Cover (LULC) information has the ability to provide various insights in order to overcome environmental and socioeconomic impacts such as disaster risk, climate change, poverty, and food insecurity. Therefore, image categorization tasks are involved in conventional works, where the classical visual interpretation techniques completely depend upon professional knowledge as well as a professional’s classification experience, which is more susceptible to subjective awareness, inefficient, and time consuming. By overcoming this issue, the latest deep-structured approach is suggested to perform the LC image classification. Initially, the land images are gathered. Further, the collected images are employed for patch splitting, where the images are split into multiple patches. After splitting, the patches are fed to the Ensemble-based Convolutional Neural Network (ECNN), which is constructed with a Fully Convolutional Network (FCN), U-Net, DeepLabv3, and Mask Region-based Convolutional Neural Network (Mask R-CNN) for performing segmentation. Here, the hyperparameters are optimally tuned with the Hybrid Billiards-inspired Water Wave Algorithm (HB-WWA) by integrating the Billiards-inspired Optimization Algorithm (BOA) and Water Wave Algorithm (WWA). Finally, the classification is carried out with a fuzzy classifier. Thus, the performance is validated and measured through diverse metrics. Consequently, the developed work has demonstrated enhanced classification accuracy when tested on other existing algorithms.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":"12 6","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139261105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DLMDish: Using Applied Deep Learning and Computer Vision to Automatically Classify Mauritian Dishes DLMDish:利用应用深度学习和计算机视觉自动分类毛里求斯菜肴
IF 1.6
International Journal of Image and Graphics Pub Date : 2023-11-18 DOI: 10.1142/s0219467825500457
Mohammud Shaad Ally Toofanee, Omar Boudraa, Karim Tamine
{"title":"DLMDish: Using Applied Deep Learning and Computer Vision to Automatically Classify Mauritian Dishes","authors":"Mohammud Shaad Ally Toofanee, Omar Boudraa, Karim Tamine","doi":"10.1142/s0219467825500457","DOIUrl":"https://doi.org/10.1142/s0219467825500457","url":null,"abstract":"The benefits of using an automatic dietary assessment system for accompanying diabetes patients and prediabetic persons to control the risk factor also referred to as the obesity “pandemic” are now widely proven and accepted. However, there is no universal solution as eating habits of people are dependent on context and culture. This project is the cornerstone for future works of researchers and health professionals in the field of automatic dietary assessment of Mauritian dishes. We propose a process to produce a food dataset for Mauritian dishes using the Generative Adversarial Network (GAN) and a fine Convolutional Neural Network (CNN) model for identifying Mauritian food dishes. The outputs and findings of this research can be used in the process of automatic calorie calculation and food recommendation, primarily using ubiquitous devices like mobile phones via mobile applications. Using the Adam optimizer with carefully fixed hyper-parameters, we achieved an Accuracy of 95.66% and Loss of 3.5% as concerns the recognition task.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":"202 4","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139262226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Diabetes Prediction Model in Big Data Healthcare Systems Using DA-KNN Technique 基于DA-KNN技术的大数据医疗系统糖尿病预测模型
International Journal of Image and Graphics Pub Date : 2023-11-03 DOI: 10.1142/s0219467825500469
N. P. Jayasri, R. Aruna
{"title":"A Novel Diabetes Prediction Model in Big Data Healthcare Systems Using DA-KNN Technique","authors":"N. P. Jayasri, R. Aruna","doi":"10.1142/s0219467825500469","DOIUrl":"https://doi.org/10.1142/s0219467825500469","url":null,"abstract":"In the past decades, there is a wide increase in the number of people affected by diabetes, a chronic illness. Early prediction of diabetes is still a challenging problem as it requires clear and sound datasets for a precise prediction. In this era of ubiquitous information technology, big data helps to collect a large amount of information regarding healthcare systems. Due to explosion in the generation of digital data, selecting appropriate data for analysis still remains a complex task. Moreover, missing values and insignificantly labeled data restrict the prediction accuracy. In this context, with the aim of improving the quality of the dataset, missing values are effectively handled by three major phases such as (1) pre-processing, (2) feature extraction, and (3) classification. Pre-processing involves outlier rejection and filling missing values. Feature extraction is done by a principal component analysis (PCA) and finally, the precise prediction of diabetes is accomplished by implementing an effective distance adaptive-KNN (DA-KNN) classifier. The experiments were conducted using Pima Indian Diabetes (PID) dataset and the performance of the proposed model was compared with the state-of-the-art models. The analysis after implementation shows that the proposed model outperforms the conventional models such as NB, SVM, KNN, and RF in terms of accuracy and ROC.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":"28 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135873594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model Self-Adaptive Display for 2D–3D Registration 2D-3D配准模型自适应显示
International Journal of Image and Graphics Pub Date : 2023-11-03 DOI: 10.1142/s0219467825500421
Peng Zhang, Yangyang Miao, Dongri Shan, Shuang Li
{"title":"Model Self-Adaptive Display for 2D–3D Registration","authors":"Peng Zhang, Yangyang Miao, Dongri Shan, Shuang Li","doi":"10.1142/s0219467825500421","DOIUrl":"https://doi.org/10.1142/s0219467825500421","url":null,"abstract":"In the 2D–3D registration process, due to the differences in CAD model sizes, models may be too large to be displayed in full or too small to have obvious features. To address these problems, previous studies have attempted to adjust parameters manually; however, this is imprecise and frequently requires multiple adjustments. Thus, in this paper, we propose the model self-adaptive display of fixed-distance and maximization (MSDFM) algorithm. The uncertainty of the model display affects the storage costs of pose images, and pose images themselves occupy a large amount of storage space; thus, we also propose the storage optimization based on the region of interest (SOBROI) method to reduce storage costs. The proposed MSDFM algorithm retrieves the farthest point of the model and then searches for the maximum pose image of the model display through the farthest point. The algorithm then changes the projection angle until the maximum pose image is maximized within the window. The pose images are then cropped by the proposed SOBROI method to reduce storage costs. By labeling the connected domains in the binary pose image, an external rectangle of the largest connected domain is applied to crop the pose image, which is then saved in the lossless compression portable network image (PNG) format. Experimental results demonstrate that the proposed MSDFM algorithm can automatically adjust models of different sizes. In addition, the results show that the proposed SOBROI method reduces the storage space of pose libraries by at least 89.66% and at most 99.86%.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":"28 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135873592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信