JBJS Essential Surgical Techniques最新文献

筛选
英文 中文
Arthroscopic Lysis of Adhesions for the Stiff Total Knee Arthroplasty. 为僵硬的全膝关节置换术进行关节镜粘连松解术
IF 1
JBJS Essential Surgical Techniques Pub Date : 2023-01-19 eCollection Date: 2023-01-01 DOI: 10.2106/JBJS.ST.22.00001
Andrew R Leggett, Gregory J Schneider, Yair D Kissin, Edward Y Cheng, Stephen R Rossman
{"title":"Arthroscopic Lysis of Adhesions for the Stiff Total Knee Arthroplasty.","authors":"Andrew R Leggett, Gregory J Schneider, Yair D Kissin, Edward Y Cheng, Stephen R Rossman","doi":"10.2106/JBJS.ST.22.00001","DOIUrl":"10.2106/JBJS.ST.22.00001","url":null,"abstract":"<p><strong>Background: </strong>Arthroscopic lysis of adhesions is a treatment option for patients with painful, stiff knees as a result of arthrofibrosis following knee arthroplasty, in whom prior manipulation under anesthesia (MUA) has failed. Typically, nonoperative treatment in these patients has also failed, including aggressive physiotherapy, stretching, dynamic splinting, and various pain-management measures or medications. Range of motion in these patients is often suboptimal, and any gains in flexibility will likely have hit a plateau over many months. The goal of performing lysis of adhesions is to increase the range of motion in patients with knee stiffness following total knee arthroplasty, as well as to reduce pain and restore physiologic function of the knee, enabling activities of daily living.</p><p><strong>Description: </strong>This is a straightforward surgical technique that can be performed in a single stage. The preoperative range of motion is documented after induction of general anesthesia. The procedure begins with the establishment of standard medial and lateral parapatellar arthroscopic portals. A blunt trocar is introduced into the knee, and blunt, manual lysis of adhesions is performed in the suprapatellar pouch and the medial and lateral gutters with use of a sweeping motion after piercing and perforating the scarred adhesive bands or capsular tissue. Next, the arthroscope is inserted into the knee, and a diagnostic arthroscopy is performed. Bands of fibrous tissue are released and resected with use of electrocautery and a 4.0-mm arthroscopic shaver. Next, the posterior cruciate ligament (PCL) is visualized in full flexion. If PCL tightness is observed, the PCL can be released from its femoral origin until the flexion gap is increased. This portion of the procedure can include either partial or full release of the PCL, as indicated. Next, the arthroscope is removed and the ipsilateral hip is flexed to 90° for a standard MUA. Gentle force is applied to the proximal aspect of the tibia, and the knee is flexed. After completing the MUA, immediate post-intervention range of motion of the knee is documented, and the patient is provided with a continuous passive motion (CPM) machine set to the maximum flexion and extension achieved in the operating room.</p><p><strong>Alternatives: </strong>Nonoperative treatment of a stiff knee following total knee arthroplasty is well documented in the current literature. Range of motion has been shown to increase in patients undergoing proper pain management, aggressive physical therapy, and closed MUA in the acute postoperative setting. Additionally, more severe cases of established arthrofibrosis despite prior MUA can be treated with an open lysis of adhesions<sup>1-3</sup>.</p><p><strong>Rationale: </strong>Arthroscopic lysis of adhesions with PCL release versus resection has been well described previously. This procedure has been shown to benefit patients in whom initial nonoperative","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67754686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tendon Sheath Incision for Surgical Treatment of Trigger Finger. 腱鞘切口用于扳机指的手术治疗。
IF 1
JBJS Essential Surgical Techniques Pub Date : 2023-01-04 eCollection Date: 2023-01-01 DOI: 10.2106/JBJS.ST.21.00041
Muhammad Ali Elahi, Jordan R Pollock, M Lane Moore, Jack M Haglin, Cara Lai, Nathaniel B Hinckley, Kevin J Renfree
{"title":"Tendon Sheath Incision for Surgical Treatment of Trigger Finger.","authors":"Muhammad Ali Elahi, Jordan R Pollock, M Lane Moore, Jack M Haglin, Cara Lai, Nathaniel B Hinckley, Kevin J Renfree","doi":"10.2106/JBJS.ST.21.00041","DOIUrl":"10.2106/JBJS.ST.21.00041","url":null,"abstract":"<p><strong>Background: </strong>Open trigger finger release is an elective surgical procedure that serves as the gold standard treatment for trigger digits. The aim of this procedure is to release the A1 pulley in a setting in which the pulley is completely visible, ultimately allowing the flexor tendons that were previously impinged on to glide more easily through the tendon sheath. Although A1-or the first annular pulley-is the site of triggering in nearly all cases, alternative sites include A2, A3, and the palmar aponeurosis<sup>1</sup>.</p><p><strong>Description: </strong>Typically, the surgical procedure can be conducted in an outpatient setting and can vary in duration from a few minutes to half an hour. The surgical procedure involves the patient lying in the supine position with the operative hand positioned to the side. A small incision, ranging from 1 to 1.5 cm, is made on the volar side of the hand, just proximal to the A1 pulley in the skin crease in order to minimize scarring. Once the underlying neurovascular structures are exposed, the A1 pulley is released longitudinally at least to the level of the A2 pulley, followed by decompression of the flexor tendons that were previously impinged on. In order to confirm the release, the patient is asked to flex and extend the affected finger. The wound is irrigated and closed once the release is confirmed by both the patient and surgeon.</p><p><strong>Alternatives: </strong>Aside from an open release, trigger finger can be treated nonoperatively with use of splinting and corticosteroid injection. Alternative operative treatments include a percutaneous release, which involves the use of a needle to release the A1 pulley<sup>2</sup>. Trigger finger can initially be treated nonoperatively. If unsuccessful, surgical intervention is considered the ultimate remedy<sup>2</sup>.</p><p><strong>Rationale: </strong>Because of their efficacious nature, corticosteroid injections are indicated preoperatively, particularly in non-diabetic patients<sup>3</sup>. Splinting is often an appropriate treatment option in patients who wish to avoid a corticosteroid injection<sup>1</sup>. However, if nonoperative treatment modalities fail to resolve pain and symptoms, surgical intervention is indicated<sup>2</sup>. In comparison with a percutaneous trigger finger release, an open release provides enhanced exposure and may be safer with respect to avoiding iatrogenic neurovascular injury<sup>2</sup>. However, in a randomized controlled trial, Gilberts et al. found no difference in the rates of recurrence when comparing open versus percutaneous trigger finger release<sup>4</sup>.</p><p><strong>Expected outcomes: </strong>With reported success rates ranging from 90% to 100%, the open release of the A1 pulley is considered a common procedure associated with minimal complications<sup>2</sup>. Complications of the procedure were assessed in a retrospective analysis of 43 patients who underwent 78 open trigger releases p","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807900/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67754419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robotic-Assisted Single-Position Prone Lateral Lumbar Interbody Fusion 机器人辅助单位俯卧侧腰椎椎间融合术
JBJS Essential Surgical Techniques Pub Date : 2023-01-01 DOI: 10.2106/jbjs.st.22.00022
Karim Shafi, Francis Lovecchio, Junho Song, Sheeraz Qureshi
{"title":"Robotic-Assisted Single-Position Prone Lateral Lumbar Interbody Fusion","authors":"Karim Shafi, Francis Lovecchio, Junho Song, Sheeraz Qureshi","doi":"10.2106/jbjs.st.22.00022","DOIUrl":"https://doi.org/10.2106/jbjs.st.22.00022","url":null,"abstract":"Background: Lateral lumbar interbody fusion (LLIF) is a widely utilized minimally invasive surgical procedure for anterior fusion of the lumbar spine. However, posterior decompression or instrumentation often necessitates patient repositioning, which is associated with increased operative time and time under anesthesia 1–3 . The single-position prone transpsoas approach is a technique that allows surgeons to access both the anterior and posterior aspects of the spine, bypassing the need for intraoperative repositioning and therefore optimizing efficiency 4 . The use of robotic assistance allows for decreased radiation exposure and increased accuracy, both with placing instrumentation and navigating the lateral corridor. Description: The patient is placed in the prone position, and pedicle screws are placed prior to interbody fusion. Pedicle screws are placed with robotic guidance. After posterior instrumentation, a skin incision for LLIF is made in the cephalocaudal direction, orthogonal to the disc space, with use of intraoperative (robotic) navigation. Fascia and abdominal muscles are incised to enter the retroperitoneal space. Under direct visualization, dilators are placed through the psoas muscle into the disc space, and an expandable retractor is placed and maintained with use of the robotic arm. Following a thorough discectomy, the disc space is sized with trial implants. The expandable cage is placed, and intraoperative fluoroscopy is utilized to verify good instrumentation positioning. Finally, posterior rods are placed percutaneously. Alternatives: An alternative surgical approach is a traditional LLIF with the patient beginning in the lateral position, with intraoperative repositioning from the lateral to the prone position if circumferential fusion is warranted. Additional alternative surgical procedures include anterior or posterior lumbar interbody fusion techniques. Rationale: LLIF is associated with reported advantages of decreased risks of vascular injury, visceral injury, dural tear, and perioperative infection 5,6 . The single-position prone transpsoas approach confers the added benefits of reduced operative time, anesthesia time, and surgical staffing requirements 7 . Other potential benefits of the prone lateral approach include improved lumbar lordosis correction, gravity-induced displacement of peritoneal contents, and ease of posterior decompression and instrumentation 8–11 . Additionally, the use of robotic assistance offers numerous benefits to minimally invasive techniques, including intraoperative navigation, instrumentation templating, a more streamlined workflow, and increased accuracy in placing instrumentation, while also providing a reduction in radiation exposure and operative time. In our experience, the table-mounted LLIF retractor has a tendency to drift toward the floor—i.e., anteriorly—when the patient is positioned prone, which may, in theory, increase the risk of iatrogenic bowel injury. The rigid robotic ","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135758433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wedgeless V-Shaped Osteotomy of the Distal Medial Femur with Locking Plate Fixation for Correction of Genu Valgum in Adolescents and Young Adults 无楔v型股骨内侧远端截骨加锁定钢板固定矫正膝外翻在青少年和年轻人中的应用
JBJS Essential Surgical Techniques Pub Date : 2023-01-01 DOI: 10.2106/jbjs.st.22.00033
Sumit Arora, Rahul Garg, Mudit Sharma, Vineet Bajaj, Abhishek Kashyap, Vikas Gupta
{"title":"Wedgeless V-Shaped Osteotomy of the Distal Medial Femur with Locking Plate Fixation for Correction of Genu Valgum in Adolescents and Young Adults","authors":"Sumit Arora, Rahul Garg, Mudit Sharma, Vineet Bajaj, Abhishek Kashyap, Vikas Gupta","doi":"10.2106/jbjs.st.22.00033","DOIUrl":"https://doi.org/10.2106/jbjs.st.22.00033","url":null,"abstract":"Background: Genu valgum is a common disorder affecting adolescents and young adults. Treatment of this disorder requires restoration of normal mechanical axis alignment and joint orientation, for which it is important to assess whether the deformity arises from the distal femur, knee joint, or proximal tibia. Most commonly, the deformity originates from the distal femur, and various osteotomies of the distal femur have been described 1–6 . The presently described wedgeless V-shaped osteotomy 7,8 is a good option among the various alternative procedures listed below. Description: The anesthetized patient is placed in the supine position on a radiolucent operating table. A bolster is placed beneath the knee to relax the posterior structures. A medial longitudinal skin incision is made that extends from the level of the medial joint line to 5 cm proximal to the adductor tubercle. The vastus medialis is identified and elevated anteriorly by detaching it from its distal and posterior aspects. The leash of vessels underneath the vastus medialis is identified, and the apex of the V-shaped osteotomy is kept just proximal to it. The anterior arm of the V is kept longer than the posterior one, both of them are kept perpendicular to each other, and the apex of the V is made to point distally. The osteotomy is performed on the medial cortex with use of an oscillating saw or multiple drill holes that are then connected using a thin osteotome. Care is taken not to utilize a saw or drill on the lateral cortex. A gentle valgus thrust is applied to break the lateral cortex without periosteal disruption. The apex of the V osteotomy on the proximal fragment is trimmed, and the deformity is corrected with varus force. The osteotomy site is stabilized with use of an anatomically contoured distal medial femoral locking plate or a medial proximal tibial L-shaped buttress plate (of the contralateral side). The implant position is verified under a C-arm image intensifier. The wound is closed in layers over a suction drain in a standard manner. Alternatives: Various types of corrective osteotomies of the distal femur have been described in the literature, including the lateral opening wedge, medial closing wedge, dome, and spike osteotomies 1–6 . All of these procedures have certain limitations and shortcomings. Rationale: The wedgeless V-shaped osteotomy is another described procedure that is inherently stable 7,8 . It is a safe procedure and yields good clinical outcomes 8,9 . The posterior arm of the V-shaped osteotomy is kept smaller than the anterior arm. The proximal cortical bone is allowed to dig into the cancellous bone of the wider distal metaphysis during deformity correction. Trimming the apex of proximal bone end after making the osteotomy facilitates the process. Expected Outcomes: In a study of 46 patients with a mean age of 16.9 years (range, 15 years to 23 years), Gupta et al. 8 reported that the mean radiographic tibiofemoral angle improved from 22.2° (r","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135709996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closed Reduction Technique for Severely Displaced Radial Neck Fractures in Children 儿童桡骨颈严重移位骨折闭合复位技术
JBJS Essential Surgical Techniques Pub Date : 2023-01-01 DOI: 10.2106/jbjs.st.21.00064
Maulin Shah, Gaurav Gupta, Qaisur Rabbi, Vikas Bohra, Kemble Wang, Akash Makadia, Shalin Shah, Chinmay Sangole
{"title":"Closed Reduction Technique for Severely Displaced Radial Neck Fractures in Children","authors":"Maulin Shah, Gaurav Gupta, Qaisur Rabbi, Vikas Bohra, Kemble Wang, Akash Makadia, Shalin Shah, Chinmay Sangole","doi":"10.2106/jbjs.st.21.00064","DOIUrl":"https://doi.org/10.2106/jbjs.st.21.00064","url":null,"abstract":"Background: The described technique is useful for achieving closed reduction of severely displaced (i.e., Judet Type-III and IV) pediatric radial neck fractures. It is widely agreed that radial neck fractures with angulation of >30° should be reduced. Various maneuvers have been described, but none uniformly achieves complete reduction in severely displaced radial neck fractures (Types III and IV) 1–4 . The aim of the present technique is to achieve closed reduction in these severely displaced radial neck fractures without surgical instrumentation. Description: A stepwise approach is described. First, the radial head is viewed in profile under an image intensifier so that it appears rectangular. Varus stress is applied at the medial aspect of the elbow by the assistant, and thumb pressure is applied at the radial head along the posterolateral aspect of the elbow. This results in partial reduction of the radial head. The elbow is then simultaneously flexed and pronated with continuous pressure over the radial head. This final step anatomically reduces the radial head, and hyperpronating the forearm locks it in the corrected position. Alternatives: Operative alternatives to this technique include intra-focal pin-assisted reduction to achieve closed reduction, the Métaizeau technique of achieving indirect closed reduction of the fracture with the aid of a TENS (Titanium Elastic Nailing System) nail, and open reduction 5 . Nonoperative techniques have also been described for use with Judet Type-II and III fractures, but not with the severely displaced types described in the present article. Rationale: This technique takes into consideration the anatomy of the capsule and lateral collateral ligament complex. The biomechanical ligamentotaxis helps in achieving anatomic reduction of the radial head. Placing the forearm in pronation tightens the annular and lateral collateral ligaments and prevents redisplacement. There are potential complications with operative treatment, including the risk of nerve injury with percutaneous reduction techniques and the risks of osteonecrosis, premature epiphyseal fusion, and heterotopic ossification with open reduction. These complications can be avoided by the use of the presently described technique. Expected Outcomes: This technique provided satisfactory clinical outcomes in our previous study 6 , with none of the 10 patients showing signs of growth disturbance, loss of reduction, or reported complications at 12 months. Terminal restriction of supination was observed in 1 patient. No patient had osteonecrosis or elbow deformity. No patient required conversion to an implant-assisted or open reduction procedure. Important Tips: The steps need to be followed sequentially as described in order to achieve an anatomical reduction. After achieving the reduction, it is necessary to keep the forearm in pronation to maintain the reduction with the aid of the lateral ligament complex. This technique may not work in complex f","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":"142 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135077618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Modified Brunelli Reconstruction for Scapholunate Ligament Dissociation 改良Brunelli重建舟月骨韧带游离
JBJS Essential Surgical Techniques Pub Date : 2023-01-01 DOI: 10.2106/jbjs.st.23.00028
Donald H. Lee
{"title":"Modified Brunelli Reconstruction for Scapholunate Ligament Dissociation","authors":"Donald H. Lee","doi":"10.2106/jbjs.st.23.00028","DOIUrl":"https://doi.org/10.2106/jbjs.st.23.00028","url":null,"abstract":"Background: The present video article describes the steps, alternatives, and outcomes of the modified Brunelli reconstruction, also known as 3-ligament tenodesis, for the treatment of irreparable scapholunate dissociations. Description: The presently described technique is generally utilized in cases in which there is an irreparable disruption of the scapholunate ligament and widening of the scapholunate junction with no carpal arthritis. Alternatives: Other treatment options for irreparable scapholunate dissociation include various forms of capsulotenodesis, bone-ligament-bone reconstruction, tendon-based reconstructions, partial wrist arthrodesis, and proximal row carpectomy. Rationale: The modified Brunelli reconstruction is indicated for a nonrepairable complete scapholunate ligament injury with a reducible rotatory subluxation of the scaphoid, without cartilage degeneration. The dorsal scapholunate ligament is reconstructed and the distal palmar scaphoid rotation is corrected with use of a distally based flexor carpi radialis tendon. The reconstruction is achieved by placing the flexor carpi radialis tendon through a transosseous scaphoid tunnel and weaving the tendon through the dorsal ulnar capsule or radiotriquetral ligament. Expected Outcomes: The modified Brunelli technique has been shown to restore wrist motion to 70% to 80% of that of the contralateral wrist and grip strength to 65% to 75% of that of the contralateral wrist, as well as to provide good pain relief in approximately 70% to 80% of patients. Important Tips: With use of simple instrumentation, C-arm fluoroscopy, and proper surgical technique, this operative procedure is fairly reproducible. Acronyms and Abbreviations: FCR = flexor carpi radialis K-wire = Kirschner wire","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":"296 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135955050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimally Invasive Transforaminal Lumbar Interbody Fusion (MI-TLIF) 微创经椎间孔腰椎椎间融合术(MI-TLIF)
JBJS Essential Surgical Techniques Pub Date : 2023-01-01 DOI: 10.2106/jbjs.st.21.00065
Stephen Saela, Michael Pompliano, Jeffrey Varghese, Kumar Sinha, Michael Faloon, Arash Emami
{"title":"Minimally Invasive Transforaminal Lumbar Interbody Fusion (MI-TLIF)","authors":"Stephen Saela, Michael Pompliano, Jeffrey Varghese, Kumar Sinha, Michael Faloon, Arash Emami","doi":"10.2106/jbjs.st.21.00065","DOIUrl":"https://doi.org/10.2106/jbjs.st.21.00065","url":null,"abstract":"Background: Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) has been established as an excellent alternative to the traditional open approach for the treatment of degenerative conditions of the lumbar spine 1–3 . Description: The procedure is performed with the patient under general anesthesia and on a radiolucent table in order to allow for intraoperative fluoroscopy. The procedure is performed through small incisions made over the vertebral levels of interest, typically utilizing either a fixed or expandable type of tubular dilator, which is eventually seated against the facet joint complex 4 . A laminectomy and/or facetectomy is performed in order to expose the disc space, and the ipsilateral neural elements are visualized 5 . The end plates are prepared, and an interbody device is placed after the disc is removed. Pedicle screws and rods are then placed for posterior fixation. Alternatives: Nonoperative alternatives include physical therapy and corticosteroid injections. Other operative techniques include open TLIF or other types of lumbar fusion approaches, such as posterior lumbar interbody fusion (PLIF), anterior lumbar interbody fusion, lateral or extreme lateral interbody fusion, or oblique lumbar interbody fusion. Rationale: Open TLIF was developed in order to obtain a more lateral approach to the lumbar disc space than was previously possible with PLIF. The goal of this was to minimize the amount of thecal-sac and nerve-root retraction required during PLIF 4 . Additionally, as the number of patients who required revision after PLIF increased, the need arose for an approach to the lumbar spine that circumvented the posterior midline scarring from previous PLIF surgical sites 6 . MI-TLIF was introduced to reduce the approach-related paraspinal muscle damage of open TLIF 5 . Indications for MI-TLIF include most degenerative pathology of the lumbar spine, including disc herniation, low-grade spondylolisthesis, and spinal and foraminal stenosis 7 . However, MI-TLIF allows for less robust correction of deformity than other minimally invasive approaches; therefore, MI-TLIF may not be as effective in cases of substantial spinal deformity or high-grade spondylolisthesis 8 . Expected Outcomes: MI-TLIF results in significantly less blood loss, postoperative pain, and hospital length of stay compared with open TLIF 1–3 . Although some studies have suggested increased operative time for MI-TLIF 9,10 , meta-analyses have shown comparable operative times between the 2 techniques 1–3 . It is thought that the discrepancy in reported operative times is the result of a learning curve and that, once that is overcome, the difference in operative time between the 2 techniques becomes minimal 11,12 . One disadvantage of MI-TLIF that has remained constant in the literature is its increased intraoperative fluoroscopy time compared with open TLIF 3,13 . The complication rate has largely been found to be equivalent between open and MI-TLIF 1–","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135955051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexor Tendon Zone II Repair 屈肌腱II区修复
JBJS Essential Surgical Techniques Pub Date : 2023-01-01 DOI: 10.2106/jbjs.st.22.00057
Daniel Y. Hong, Robert J. Strauch
{"title":"Flexor Tendon Zone II Repair","authors":"Daniel Y. Hong, Robert J. Strauch","doi":"10.2106/jbjs.st.22.00057","DOIUrl":"https://doi.org/10.2106/jbjs.st.22.00057","url":null,"abstract":"Background: Flexor-tendon injury is a historically challenging problem for orthopaedic surgeons. Much research has been dedicated to finding solutions that offer balance in terms of the strength and ease of the repair versus the rate of complications such as adhesions. The number of core sutures, distance from the tendon edge, and use of an epitendinous stitch have been shown to affect repair strength 1–4 . A number of configurations have been described for the placement of the suture; however, none has been identified as a clear gold standard 5 . This article will highlight the preferred tendon repair technique of the senior author (R.J.S.), the Strickland repair with a simple running epitendinous stitch. Relevant anatomy, indications, operative technique, and postoperative management will be discussed. Description: The flexor tendon is typically accessed via extension of the laceration that caused the initial injury. After the neurovascular structures and pulleys are assessed, the tendon is cleaned and prepared for repair. A 3-0 braided nylon suture is utilized for the 4-core strand repair and placed in the Strickland fashion. A 5-0 polypropylene suture is then utilized for the simple running epitendinous stitch. Alternatives: Multiple alternative techniques have been described. These vary in the number of core strands, the repair configuration, the suture caliber, and the use of an epitendinous or other suture. Nonoperative treatment is typically reserved for partial flexor-tendon laceration, as complete tendon discontinuity will not heal and requires surgical intervention. Rationale: The 4-core strand configuration has been well established to increase the strength of the repair as compared with 2-core strand configurations, while also being easier to accomplish and with less suture burden than other techniques 1 . The presently described technique has excellent repair strength and can allow for early active range of motion, which is critical to reduce the risk of postoperative adhesions and stiffness. Expected Outcomes: Excellent outcomes have been demonstrated for primary flexor-tendon repair if performed soon after the injury 1,2,6,7 . Delayed repair may lead to adhesions and poor tendon healing 8 . Early postoperative rehabilitation is vital for success 9 . There are advocates for either active or passive protocols 10–12 . The protocol at our institution is to begin early active place-and-hold therapy at 3 to 5 days postoperatively, which has been shown in the literature to provide improved finger motion as compared with passive-motion therapy 13–16 . Important Tips: The proximal end of the tendon may need to be retrieved via a separate incision if it is not accessible through the flexor-tendon sheath. The proximal end of the tendon may be held in place with a 25-gauge needle in order to best place sutures into both ends of the tendon. The epitendinous suture is run around the back wall before the core sutures are tied down, in order to p","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135954744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronic Exertional Compartment Syndrome of the Lower Extremity: Diagnosis and Surgical Treatment. 下肢慢性运动室综合征的诊断和外科治疗。
IF 1.3
JBJS Essential Surgical Techniques Pub Date : 2022-11-16 eCollection Date: 2022-10-01 DOI: 10.2106/JBJS.ST.21.00059
Nathan W Callender, Emily Lu, Kevin D Martin
{"title":"Chronic Exertional Compartment Syndrome of the Lower Extremity: Diagnosis and Surgical Treatment.","authors":"Nathan W Callender, Emily Lu, Kevin D Martin","doi":"10.2106/JBJS.ST.21.00059","DOIUrl":"10.2106/JBJS.ST.21.00059","url":null,"abstract":"<p><strong>Background: </strong>Chronic exertional compartment syndrome of the lower extremity is a condition that characteristically presents as recurrent anterior, posterior, and/or lateral lower-extremity pain on repetitive activity and physical exertion<sup>1</sup>. This condition is commonly seen in athletes, runners, and military personnel<sup>2</sup>. Open fasciotomy has been demonstrated to be a highly effective surgical treatment for patients with this condition who do not experience symptomatic relief after a thorough trial of nonoperative treatment<sup>3</sup>.</p><p><strong>Description: </strong>Diagnostic compartment pressure management is achieved through direct insertion of a compartment-pressure-measuring device into the anterior, lateral, and posterior compartments of the lower extremity<sup>4</sup>. Surgical treatment of the anterior and lateral compartments with use of open fasciotomy employs longitudinal proximal and distal incisions that are made on the lateral surface of the leg approximately 3 finger-breadths distal and proximal to the fibular flare, respectively, and 3 finger-breadths lateral to the tibial crest. Surgical treatment of the posterior compartments with use of open fasciotomy employs a single, mid-shaft incision made approximately 2.5 cm medial to the tibial ridge. Dissection is carried down to the deep fascia at both sites, beginning at the distal operative site. Care is taken to avoid transection of the superficial peroneal nerve at the distal anterolateral incision and saphenous vein and nerve at the medial incision. Once down to the deep fascia, a scalpel is utilized to incise the fascia. Metzenbaum scissors are then employed under the incision, spreading the scissors while sliding them over the muscles proximally and distally to release the muscular attachments from the fascia as well as to release the fascia itself<sup>3</sup>. This process is repeated in the anterior, lateral, and superficial posterior compartments through the proximal and distal incisions. In the deep posterior compartment, the fascia is released from the tibial ridge with a large Cobb elevator. Closure is achieved with deep dermal and superficial sutures.</p><p><strong>Alternatives: </strong>Nonoperative alternatives have been reported to include nonpharmacological modalities such as walking modification and shoe inserts, pharmacological therapy with nonsteroidal anti-inflammatory drugs, and physical therapy targeted at conditioning the lower extremity<sup>5</sup>. Nonoperative intervention has been demonstrated to increase endurance in select patients; however, most patients must either stop the activity associated with the compartment syndrome altogether or proceed to surgery for complete resolution of symptoms<sup>5</sup>. There are a few surgical alternatives that differ in their utilization of minimally invasive approaches versus a direct open approach<sup>6</sup>; however, all existing surgical treatments of this condition invol","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":"12 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578677/pdf/jxt-12-e21.00059.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41239628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple Points of Pelvic Fixation: Stacked S2-Alar-Iliac Screws (S2AI) or Concurrent S2AI and Open Sacroiliac Joint Fusion with Triangular Titanium Rod. 多点骨盆固定:堆叠式骶髂螺钉(S2AI)或三角形钛棒同时S2AI和开放骶髂关节融合。
IF 1.3
JBJS Essential Surgical Techniques Pub Date : 2022-10-01 DOI: 10.2106/JBJS.ST.21.00044
David W Polly, Kenneth J Holton, Paul O Soriano, Jonathan N Sembrano, Christopher T Martin, Nathan R Hendrickson, Kristen E Jones
{"title":"Multiple Points of Pelvic Fixation: Stacked S2-Alar-Iliac Screws (S2AI) or Concurrent S2AI and Open Sacroiliac Joint Fusion with Triangular Titanium Rod.","authors":"David W Polly, Kenneth J Holton, Paul O Soriano, Jonathan N Sembrano, Christopher T Martin, Nathan R Hendrickson, Kristen E Jones","doi":"10.2106/JBJS.ST.21.00044","DOIUrl":"https://doi.org/10.2106/JBJS.ST.21.00044","url":null,"abstract":"<p><p>Sacropelvic fixation is a continually evolving technique in the treatment of adult spinal deformity. The 2 most widely utilized techniques are iliac screw fixation and S2-alar-iliac (S2AI) screw fixation<sup>1-3</sup>. The use of these techniques at the base of long fusion constructs, with the goal of providing a solid base to maintain surgical correction, has improved fusion rates and decreased rates of revision<sup>4</sup>.</p><p><strong>Description: </strong>The procedure is performed with the patient under general anesthesia in the prone position and with use of 3D computer navigation based on intraoperative cone-beam computed tomography (CT) imaging. A standard open posterior approach with a midline incision and subperiosteal exposure of the proximal spine and sacrum is performed. Standard S2AI screw placement is performed. The S2AI starting point is on the dorsal sacrum 2 to 3 mm above the S2 foramen, aiming as caudal as possible in the teardrop. A navigated awl is utilized to establish the screw trajectory, passing through the sacrum, across the sacroiliac (SI) joint, and into the ilium. The track is serially tapped with use of navigated taps, 6.5 mm followed by 9.5 mm, under power. The screw is then placed under power with use of a navigated screwdriver.Proper placement of the caudal implant is vital as it allows for ample room for subsequent instrumentation. The additional point of pelvic fixation can be an S2AI screw or a triangular titanium rod (TTR). This additional implant is placed cephalad to the trajectory of the S2AI screw. A starting point 2 to 3 mm proximal to the S2AI screw tulip head on the sacral ala provides enough clearance and also helps to keep the implant low enough in the teardrop that it is likely to stay within bone. More proximal starting points should be avoided as they will result in a cephalad breach.For procedures with an additional point of pelvic fixation, the cephalad S2AI screw can be placed using the previously described method. For placement of the TTR, the starting point is marked with a burr. A navigated drill guide is utilized to first pass a drill bit to create a pilot hole, followed by a guide pin proximal to the S2AI screw in the teardrop. Drilling the tip of the guide pin into the distal, lateral iliac cortex prevents pin backout during the subsequent steps. A cannulated drill is then passed over the guide pin, traveling from the sacral ala and breaching the SI joint into the pelvis. A navigated broach is then utilized to create a track for the implant. The flat side of the triangular broach is turned toward the S2AI screw in order to help the implant sit as close as possible to the screw and to allow the implant to be as low as possible in the teardrop. The navigation system is utilized to choose the maximum possible implant length. The TTR is then passed over the guide pin and impacted to the appropriate depth. Multiplanar post-placement fluoroscopic images and an additional intraoperative C","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":"12 4","pages":"e21.00044"},"PeriodicalIF":1.3,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889296/pdf/jxt-12-e21.00044.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9230754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信