{"title":"Evaluation of sand p–y curves by predicting both monopile lateral response and OWT natural frequency","authors":"Douifi Amel, Amar Bouzid Djillali, Bhattacharya Subhamoy, Amoura Nasreddine","doi":"10.2478/sgem-2022-0003","DOIUrl":"https://doi.org/10.2478/sgem-2022-0003","url":null,"abstract":"Abstract Extending the use of the p–y curves included in the regulation codes API and DNV to design large-diameter monopiles supporting offshore wind turbines (OWTs) was unsuccessful as it resulted in an inaccurate estimation of the monopile behavior. This had prompted many investigators to propose formulations to enhance the performances of Winkler model. In this paper, two case studies are considered. A case consisting of an OWT at Horns Rev (Denmark) supported by a monopile in a sandy soil was studied first. Taking the FEA using ABAQUS as reference, results of WILDOWER 1.0 (a Winkler computer code) using the recently proposed p–y curves giving design parameters were plotted and evaluated. In order to see the ability of proposed p–y curves to predict the monopile head movements, and consequently the first natural frequency (1st NF), a second case study consisting of a monopile supporting an OWT at North Hoyle (UK) was selected. The monopile head stiffness in terms of lateral, rocking, and cross-coupling stiffness coefficients, necessary for the 1st NF, were computed using both ABAQUS and WILDPOWER 1.0. Comparisons with the measured 1st NF showed that with the exception of one p–y model, none of other proposed Winkler methods is able to predict accurately this parameter.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"44 1","pages":"66 - 81"},"PeriodicalIF":0.6,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45417237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Krzysztof Fuławka, A. Kwietniak, V. Lay, Izabela Jaśkiewicz-Proć
{"title":"Importance of seismic wave frequency in FEM-based dynamic stress and displacement calculations of the earth slope","authors":"Krzysztof Fuławka, A. Kwietniak, V. Lay, Izabela Jaśkiewicz-Proć","doi":"10.2478/sgem-2022-0002","DOIUrl":"https://doi.org/10.2478/sgem-2022-0002","url":null,"abstract":"Abstract Reliable assessment of earthen dams’ stability and tailing storage facilities widely used in the mining industry is challenging, particularly under seismic load conditions. In this paper, we propose to take into account the effect of the dominant frequency of seismic load on the stability assessment of tailing/earthen dams. The calculations are performed by finite element modelling (FEM) with the Mohr–Coulomb failure criteria. To separate the frequency content from other dynamic parameters describing the seismic wave, synthetic waveforms with identical amplitude and attenuation characteristics, but differing spectral characteristics have been used. The analysis has been performed for three different slope angles and two scenarios of seismic wave propagation. Consequently, the changes of total displacement and shear stresses depending on the frequencies have been determined and clearly show that lower frequencies cause higher stress levels and displacement. Finally, the response surface methodology has been applied to determine how different parameters affect the slope stability under dynamic load conditions. Overall, this study is a first step to improve the existing methods to assess slope stability when considering seismic load.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"44 1","pages":"82 - 96"},"PeriodicalIF":0.6,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42445478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Displacements of shell in soil-steel bridge subjected to moving load: determination using strain gauge measurements and numerical simulation","authors":"C. Machelski, Maciej Sobótka, Szczepan Grosel","doi":"10.2478/sgem-2021-0028","DOIUrl":"https://doi.org/10.2478/sgem-2021-0028","url":null,"abstract":"Abstract This paper analyses displacements of a shell in a soil-steel bridge subjected to quasi-static moving loads. The considerations relate to a large span structure located in Ostróda, Poland. In particular, shell displacements during a loading cycle consisting of consecutive passages of a pair of trucks over the bridge are investigated. The results of a full-scale test, that is, the readings from a system of strain gauges arranged along the shell circumferential section, are the basis for determination of shell displacements. The proposed algorithm makes it possible to calculate any component of the displacement using just a simple model of the shell in the form of a linear elastic curvilinear beam. The approach uses real measurements, and thus, it yields results of displacements reflecting the actual mechanical behaviour of the entire composite structure including not only the shell, but also the backfill, the pavement, etc. The calculated state of displacement sets the basis for calibration of the numerical model. Finite element (FE) analyses include staged construction, that is, backfilling the shell by placing successive soil layers, as well as the loading test with the vehicles moving over the bridge. It is demonstrated that the ballasting of the shell during backfilling contributes to the improvement of the simulated behaviour of the object at the stage of operation, that is, when subjected to moving truck load. Thus, the calibration of the FE model is successfully carried out using the results of strain gauge measurements.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"44 1","pages":"26 - 37"},"PeriodicalIF":0.6,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46428449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical study on stress paths in grounds reinforced with long and short CFG piles during adjacent rigid retaining wall movement","authors":"Bantayehu Uba Uge, Y. Guo, Yunlong Liu","doi":"10.2478/sgem-2021-0029","DOIUrl":"https://doi.org/10.2478/sgem-2021-0029","url":null,"abstract":"Abstract Ensuring the safety of existing structures is an important issue when planning and executing adjacent new foundation pit excavations. Hence, understanding the stress state conditions experienced by the soil element behind a retaining wall at a given location during different excavation stages has been a key observational modelling aspect of the performance of excavations. By establishing and carrying out sophisticated soil–structure interaction analyses, stress paths render clarity on soil deformation mechanism. On the other hand, column-type soft ground treatment has recently got exceeding attention and practical implementation. So, the soil stress–strain response to excavation-induced disturbances needs to be known as well. To this end, this paper discusses the stress change and redistribution phenomena in a treated ground based on 3D numerical analyses. The simulation was verified against results from a 1 g indoor experimental test conducted on composite foundation reinforced with long and short cement–fly ash–gravel (CFG) pile adjacent to a moving rigid retaining wall. It was observed that the stress path for each monitoring point in the shallow depth undergoes a process of stress unloading at various dropping amounts of principal stress components in a complex manner. The closer the soil element is to the wall, the more it experiences a change in principal stress components as the wall movement progresses; also, the induced stress disturbance weakens significantly as the observation point becomes farther away from the wall. Accordingly, the overall vertical load-sharing percentage of the upper soil reduces proportionally.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"44 1","pages":"38 - 52"},"PeriodicalIF":0.6,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47475393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Early-Age Thermal-Shrinkage Cracking in Deep Foundations","authors":"Ł. Grabowski, M. Mitew-Czajewska","doi":"10.2478/sgem-2021-0033","DOIUrl":"https://doi.org/10.2478/sgem-2021-0033","url":null,"abstract":"Abstract With the growing rate of urbanisation, deep foundations are playing an ever-larger role in the development of cities, reaching deeper than before to fulfil the requirements of new constructions. While current European standards include design procedures for structural and geotechnical design, they lack provisions for massive deep foundations with regard to early-age thermal effects. This paper presents aspects of the phenomenon especially important for deep foundations and discusses normative requirements that influence their thermal behaviour. Further, the paper describes the methods and results of the research carried out in the United Kingdom on 1.50-m-thick diaphragm walls of a deep circular shaft. Shaft features are described, as well as the materials used. The measurements were carried out using vibrating wire strain gauges coupled with temperature readings. The results presented refer to one of the test panels concreted in January 2020. The temperature results are analysed together with the influence of work scheduling on the readings. Strain results that indicate contractive behaviour of the test panel are investigated together with the possible causes leading to such readings. Plans and directions for future research are discussed.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"43 1","pages":"510 - 520"},"PeriodicalIF":0.6,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47697148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Forecasting the impact of buildings with multi-storey underground parts on the displacement of subsoil using modern numerical tools","authors":"Hanna Michalak, P. Przybysz","doi":"10.2478/sgem-2021-0034","DOIUrl":"https://doi.org/10.2478/sgem-2021-0034","url":null,"abstract":"Abstract The paper will analyse and review the experience to date in determining the impact range of implementation of deeply founded structures on the displacement of the subsoil in the vicinity. With the background of these experiences, primarily empirical, the present possibilities of using numerical modelling to forecast the displacements of the terrain surface in various stages of works, that is, execution of deep excavation support systems, excavation-deepening phases with successive adding of struts, construction of underground levels and erection of the above-ground part of the building, will be presented. Based on the results of own research, conclusions on the use of 3D numerical models in spatial shaping and designing the structure of underground parts of new buildings erected in dense urban development will be presented. The characterised 3D numerical models were verified, taking into account the actual results of geodetic measurements of the completed buildings. Determining the range and forecasting the displacements of the subsoil are necessary for the design and implementation of investments due to the need to ensure the safety of erection and use of a new building and the buildings located within the area of influence.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"43 1","pages":"479 - 491"},"PeriodicalIF":0.6,"publicationDate":"2021-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47175354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimisation of absorber parameters in the case of stochastic vibrations in a bridge with a deck platform for servicing pipelines","authors":"J. Grosel, M. Podwórna","doi":"10.2478/sgem-2021-0030","DOIUrl":"https://doi.org/10.2478/sgem-2021-0030","url":null,"abstract":"Abstract The paper focuses on the problem of optimising the cooperation between a dynamic vibration absorber (DVA) and a structure. The authors analyse a road beam bridge equipped with a working platform (deck) used to service pipelines installed on the structure. The paper studies the problem of choosing the optimal parameters for damping absorbers that reduce the random vibration of a beam subjected to a random sequence of moving forces with a constant velocity. The stochastic properties of the load are modelled by means of a filtering Poisson process. A single-degree-of-freedom (SDOF) absorber model with a multi-degree-of-freedom (MDOF) primary structure model are is considered.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"43 1","pages":"492 - 500"},"PeriodicalIF":0.6,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41927961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification of residual force in static load tests on instrumented screw displacement piles","authors":"A. Krasinski, M. Wiszniewski","doi":"10.2478/sgem-2021-0025","DOIUrl":"https://doi.org/10.2478/sgem-2021-0025","url":null,"abstract":"Abstract Occurrence of the so-called residual force of an unknown value significantly disturbs interpretation of static load tests performed on piles equipped with additional measuring instruments. Screw displacement piles are the piling technology in which the residual force phenomenon is very common. Its formation mechanism is closely related to the installation method of this type of piles, which initiates generation of negative pile skin friction without any additional external factors. Knowledge of the value and distribution of a residual force (trapped in a pile shaft before starting the load test) is a necessary condition for the proper interpretation of instrumented pile test results. In this article, a clear and easy-to-use method of residual force identification, based on the analysis of shaft deformations recorded during pile unloading is presented. The method was successfully verified on two pile examples and proved to be effective and practical.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"43 1","pages":"438 - 451"},"PeriodicalIF":0.6,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48154158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of the temperature effect on the stresses and deformations of GRP panels during the grouting process when using relining technology","authors":"Z. Fyall","doi":"10.2478/sgem-2021-0032","DOIUrl":"https://doi.org/10.2478/sgem-2021-0032","url":null,"abstract":"Abstract The paper presents a numerical analysis of the behaviour of egg-shaped glass-reinforced plastic (GRP) panels during the grouting process when using short relining technology. The analysis was carried out for panels subjected to temperature changes. The temperature increase was caused by the heat of hydration of the grout. It was shown that temperature had a significant effect on the stresses occurring in the panels’ walls and also on their deformations. The analysis involved grout being added in a single stage and then in two stages for comparison. The distribution of stresses and deformations were examined for panels with different wall thicknesses that ranged from 12 to 20 mm. Extensive knowledge about the grouting process and the effect of temperature on the behaviour of GRP panels during the assembly stage when using short relining technology could make this non-disruptive technology more competitive with regards to the time of its implementation and its costs when compared to traditional methods.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"43 1","pages":"521 - 531"},"PeriodicalIF":0.6,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45141331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bearing capacity of eccentrically loaded strip footing on spatially variable cohesive soil","authors":"Jędrzej Dobrzański, M. Kawa","doi":"10.2478/sgem-2021-0035","DOIUrl":"https://doi.org/10.2478/sgem-2021-0035","url":null,"abstract":"Abstract The study considers the bearing capacity of eccentrically loaded strip footing on spatially variable, purely cohesive soil. The problem is solved using the random finite element method. The anisotropic random field of cohesion is generated using the Fourier series method, and individual problems within performed Monte Carlo simulations (MCSs) are solved using the Abaqus finite element code. The analysis includes eight different variants of the fluctuation scales and six values of load eccentricity. For each of these 48 cases, 1000 MCSs are performed and the probabilistic characteristics of the obtained values are calculated. The results of the analysis indicate that the mean value of the bearing capacity decreases linearly with eccentricity, which is consistent with Meyerhof's theory. However, the decrease in standard deviation and increase in the coefficient of variation of the bearing capacity observed are non-linear, which is particularly evident for small eccentricities. For one chosen variant of fluctuation scales, a reliability analysis investigating the influence of eccentricity on reliability index is performed. The results of the analysis conducted show that the value of the reliability index can be significantly influenced even by small eccentricities. This indicates the need to consider at least random eccentricities in future studies regarding probabilistic modelling of foundation bearing capacity.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"43 1","pages":"425 - 437"},"PeriodicalIF":0.6,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43570300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}