Journal of Data and Information Science最新文献

筛选
英文 中文
Performance evaluation of seven multi-label classification methods on real-world patent and publication datasets 七种多标签分类方法在真实世界专利和出版物数据集上的性能评估
IF 1.5 3区 管理学
Journal of Data and Information Science Pub Date : 2024-05-27 DOI: 10.2478/jdis-2024-0014
Shuo Xu, Yuefu Zhang, Xin An, Sainan Pi
{"title":"Performance evaluation of seven multi-label classification methods on real-world patent and publication datasets","authors":"Shuo Xu, Yuefu Zhang, Xin An, Sainan Pi","doi":"10.2478/jdis-2024-0014","DOIUrl":"https://doi.org/10.2478/jdis-2024-0014","url":null,"abstract":"Purpose Many science, technology and innovation (STI) resources are attached with several different labels. To assign automatically the resulting labels to an interested instance, many approaches with good performance on the benchmark datasets have been proposed for multilabel classification task in the literature. Furthermore, several open-source tools implementing these approaches have also been developed. However, the characteristics of real-world multilabel patent and publication datasets are not completely in line with those of benchmark ones. Therefore, the main purpose of this paper is to evaluate comprehensively seven multi-label classification methods on real-world datasets. Design/methodology/approach Three real-world datasets (Biological-Sciences, Health-Sciences, and USPTO) from SciGraph and USPTO database are constructed. Seven multilabel classification methods with tuned parameters (dependency-LDA, ML<jats:italic>k</jats:italic>NN, LabelPowerset, RA<jats:italic>k</jats:italic>EL, TextCNN, TexRNN, and TextRCNN) are comprehensively compared on these three real-world datasets. To evaluate the performance, the study adopts three classification-based metrics: Macro-F1, Micro-F1, and Hamming Loss. Findings The TextCNN and TextRCNN models show obvious superiority on small-scale datasets with more complex hierarchical structure of labels and more balanced documentlabel distribution in terms of macro-F1, micro-F1 and Hamming Loss. The ML<jats:italic>k</jats:italic>NN method works better on the larger-scale dataset with more unbalanced document-label distribution. Research limitations Three real-world datasets differ in the following aspects: statement, data quality, and purposes. Additionally, open-source tools designed for multi-label classification also have intrinsic differences in their approaches for data processing and feature selection, which in turn impacts the performance of a multi-label classification approach. In the near future, we will enhance experimental precision and reinforce the validity of conclusions by employing more rigorous control over variables through introducing expanded parameter settings. Practical implications The observed Macro F1 and Micro F1 scores on real-world datasets typically fall short of those achieved on benchmark datasets, underscoring the complexity of real-world multi-label classification tasks. Approaches leveraging deep learning techniques offer promising solutions by accommodating the hierarchical relationships and interdependencies among labels. With ongoing enhancements in deep learning algorithms and large-scale models, it is expected that the efficacy of multi-label classification tasks will be significantly improved, reaching a level of practical utility in the foreseeable future. Originality/value (1) Seven multi-label classification methods are comprehensively compared on three real-world datasets. (2) The TextCNN and TextRCNN models perform better on small-scale datasets with more compl","PeriodicalId":44622,"journal":{"name":"Journal of Data and Information Science","volume":"66 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141165897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can ChatGPT evaluate research quality? ChatGPT 可以评估研究质量吗?
IF 1.5 3区 管理学
Journal of Data and Information Science Pub Date : 2024-04-30 DOI: 10.2478/jdis-2024-0013
Mike Thelwall
{"title":"Can ChatGPT evaluate research quality?","authors":"Mike Thelwall","doi":"10.2478/jdis-2024-0013","DOIUrl":"https://doi.org/10.2478/jdis-2024-0013","url":null,"abstract":"Purpose Assess whether ChatGPT 4.0 is accurate enough to perform research evaluations on journal articles to automate this time-consuming task. Design/methodology/approach Test the extent to which ChatGPT-4 can assess the quality of journal articles using a case study of the published scoring guidelines of the UK Research Excellence Framework (REF) 2021 to create a research evaluation ChatGPT. This was applied to 51 of my own articles and compared against my own quality judgements. Findings ChatGPT-4 can produce plausible document summaries and quality evaluation rationales that match the REF criteria. Its overall scores have weak correlations with my self-evaluation scores of the same documents (averaging r=0.281 over 15 iterations, with 8 being statistically significantly different from 0). In contrast, the average scores from the 15 iterations produced a statistically significant positive correlation of 0.509. Thus, averaging scores from multiple ChatGPT-4 rounds seems more effective than individual scores. The positive correlation may be due to ChatGPT being able to extract the author’s significance, rigour, and originality claims from inside each paper. If my weakest articles are removed, then the correlation with average scores (r=0.200) falls below statistical significance, suggesting that ChatGPT struggles to make fine-grained evaluations. Research limitations The data is self-evaluations of a convenience sample of articles from one academic in one field. Practical implications Overall, ChatGPT does not yet seem to be accurate enough to be trusted for any formal or informal research quality evaluation tasks. Research evaluators, including journal editors, should therefore take steps to control its use. Originality/value This is the first published attempt at post-publication expert review accuracy testing for ChatGPT.","PeriodicalId":44622,"journal":{"name":"Journal of Data and Information Science","volume":"8 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140827846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amend: an integrated platform of retracted papers and concerned papers 修正:被撤论文和相关论文的综合平台
IF 1.5 3区 管理学
Journal of Data and Information Science Pub Date : 2024-03-21 DOI: 10.2478/jdis-2024-0012
Menghui Li, Fuyou Chen, Sichao Tong, Liying Yang, Zhesi Shen
{"title":"Amend: an integrated platform of retracted papers and concerned papers","authors":"Menghui Li, Fuyou Chen, Sichao Tong, Liying Yang, Zhesi Shen","doi":"10.2478/jdis-2024-0012","DOIUrl":"https://doi.org/10.2478/jdis-2024-0012","url":null,"abstract":"Purpose The notable increase in retraction papers has attracted considerable attention from diverse stakeholders. Various sources are now offering information related to research integrity, including concerns voiced on social media, disclosed lists of paper mills, and retraction notices accessible through journal websites. However, despite the availability of such resources, there remains a lack of a unified platform to consolidate this information, thereby hindering efficient searching and cross-referencing. Thus, it is imperative to develop a comprehensive platform for retracted papers and related concerns. This article aims to introduce “Amend,” a platform designed to integrate information on research integrity from diverse sources. Design/methodology/approach The Amend platform consolidates concerns and lists of problematic articles sourced from social media platforms (e.g., PubPeer, For Better Science), retraction notices from journal websites, and citation databases (e.g., Web of Science, CrossRef). Moreover, Amend includes investigation and punishment announcements released by administrative agencies (e.g., NSFC, MOE, MOST, CAS). Each related paper is marked and can be traced back to its information source via a provided link. Furthermore, the Amend database incorporates various attributes of retracted articles, including citation topics, funding details, open access status, and more. The reasons for retraction are identified and classified as either academic misconduct or honest errors, with detailed subcategories provided for further clarity. Findings Within the Amend platform, a total of 32,515 retracted papers indexed in SCI, SSCI, and ESCI between 1980 and 2023 were identified. Of these, 26,620 (81.87%) were associated with academic misconduct. The retraction rate stands at 6.64 per 10,000 articles. Notably, the retraction rate for non-gold open access articles significantly differs from that for gold open access articles, with this disparity progressively widening over the years. Furthermore, the reasons for retractions have shifted from traditional individual behaviors like falsification, fabrication, plagiarism, and duplication to more organized large-scale fraudulent practices, including Paper Mills, Fake Peer-review, and Artificial Intelligence Generated Content (AIGC). Research limitations The Amend platform may not fully capture all retracted and concerning papers, thereby impacting its comprehensiveness. Additionally, inaccuracies in retraction notices may lead to errors in tagged reasons. Practical implications Amend provides an integrated platform for stakeholders to enhance monitoring, analysis, and research on academic misconduct issues. Ultimately, the Amend database can contribute to upholding scientific integrity. Originality/value This study introduces a globally integrated platform for retracted and concerning papers, along with a preliminary analysis of the evolutionary trends in retracted papers.","PeriodicalId":44622,"journal":{"name":"Journal of Data and Information Science","volume":"21 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New roles of research data infrastructure in research paradigm evolution 研究数据基础设施在研究范式演变中的新作用
IF 1.5 3区 管理学
Journal of Data and Information Science Pub Date : 2024-03-05 DOI: 10.2478/jdis-2024-0011
Yizhan Li, Lu Dong, Xiaoxiao Fan, Ren Wei, Shijie Guo, Wenzhen Ma, Zexia Li
{"title":"New roles of research data infrastructure in research paradigm evolution","authors":"Yizhan Li, Lu Dong, Xiaoxiao Fan, Ren Wei, Shijie Guo, Wenzhen Ma, Zexia Li","doi":"10.2478/jdis-2024-0011","DOIUrl":"https://doi.org/10.2478/jdis-2024-0011","url":null,"abstract":"Research data infrastructures form the cornerstone in both cyber and physical spaces, driving the progression of the data-intensive scientific research paradigm. This opinion paper presents an overview of global research data infrastructure, drawing insights from national roadmaps and strategic documents related to research data infrastructure. It emphasizes the pivotal role of research data infrastructures by delineating four new missions aimed at positioning them at the core of the current scientific research and communication ecosystem. The four new missions of research data infrastructures are: (1) as a pioneer, to transcend the disciplinary border and address complex, cutting-edge scientific and social challenges with problem- and data-oriented insights; (2) as an architect, to establish a digital, intelligent, flexible research and knowledge services environment; (3) as a platform, to foster the high-end academic communication; (4) as a coordinator, to balance scientific openness with ethics needs.","PeriodicalId":44622,"journal":{"name":"Journal of Data and Information Science","volume":"29 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140047152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
General laws of funding for scientific citations: how citations change in funded and unfunded research between basic and applied sciences 科学引文资助的一般规律:基础科学和应用科学之间有资助和无资助研究的引文如何变化
IF 1.5 3区 管理学
Journal of Data and Information Science Pub Date : 2024-02-26 DOI: 10.2478/jdis-2024-0005
Mario Coccia, Saeed Roshani
{"title":"General laws of funding for scientific citations: how citations change in funded and unfunded research between basic and applied sciences","authors":"Mario Coccia, Saeed Roshani","doi":"10.2478/jdis-2024-0005","DOIUrl":"https://doi.org/10.2478/jdis-2024-0005","url":null,"abstract":"Purpose The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences. Design/methodology/approach A power law model analyzes the relationship between research funding and citations of papers using 831,337 documents recorded in the Web of Science database. Findings The original results reveal general characteristics of the diffusion of science in research fields: a) Funded articles receive higher citations compared to unfunded papers in journals; b) Funded articles exhibit a super-linear growth in citations, surpassing the increase seen in unfunded articles. This finding reveals a higher diffusion of scientific knowledge in funded articles. Moreover, c) funded articles in both basic and applied sciences demonstrate a similar expected change in citations, equivalent to about 1.23%, when the number of funded papers increases by 1% in journals. This result suggests, for the first time, that funding effect of scientific research is an invariant driver, irrespective of the nature of the basic or applied sciences. Originality/value This evidence suggests empirical laws of funding for scientific citations that explain the importance of robust funding mechanisms for achieving impactful research outcomes in science and society. These findings here also highlight that funding for scientific research is a critical driving force in supporting citations and the dissemination of scientific knowledge in recorded documents in both basic and applied sciences. Practical implications This comprehensive result provides a holistic view of the relationship between funding and citation performance in science to guide policymakers and R&D managers with science policies by directing funding to research in promoting the scientific development and higher diffusion of results for the progress of human society.","PeriodicalId":44622,"journal":{"name":"Journal of Data and Information Science","volume":"143 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139981056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research funding and citations in papers of Nobel Laureates in Physics, Chemistry and Medicine, 2019-2020 2019-2020 年诺贝尔物理学奖、化学奖和医学奖得主的研究经费和论文引用情况
IF 1.5 3区 管理学
Journal of Data and Information Science Pub Date : 2024-02-19 DOI: 10.2478/jdis-2024-0006
Mario Coccia, Saeed Roshani
{"title":"Research funding and citations in papers of Nobel Laureates in Physics, Chemistry and Medicine, 2019-2020","authors":"Mario Coccia, Saeed Roshani","doi":"10.2478/jdis-2024-0006","DOIUrl":"https://doi.org/10.2478/jdis-2024-0006","url":null,"abstract":"Purpose The goal of this study is a comparative analysis of the relation between funding (a main driver for scientific research) and citations in papers of Nobel Laureates in physics, chemistry and medicine over 2019-2020 and the same relation in these research fields as a whole. Design/Methodology/Approach This study utilizes a power law model to explore the relationship between research funding and citations of related papers. The study here analyzes 3,539 recorded documents by Nobel Laureates in physics, chemistry and medicine and a broader dataset of 183,016 documents related to the fields of physics, medicine, and chemistry recorded in the Web of Science database. Findings Results reveal that in chemistry and medicine, funded researches published in papers of Nobel Laureates have higher citations than unfunded studies published in articles; vice versa high citations of Nobel Laureates in physics are for unfunded studies published in papers. Instead, when overall data of publications and citations in physics, chemistry and medicine are analyzed, all papers based on funded researches show higher citations than unfunded ones. Originality/Value Results clarify the driving role of research funding for science diffusion that are systematized in general properties: a) articles concerning funded researches receive more citations than (un)funded studies published in papers of physics, chemistry and medicine sciences, generating a high Matthew effect (a higher growth of citations with the increase in the number of papers); b) research funding increases the citations of articles in fields oriented to applied research (e.g., chemistry and medicine) more than fields oriented towards basic research (e.g., physics). Practical Implications The results here explain some characteristics of scientific development and diffusion, highlighting the critical role of research funding in fostering citations and the expansion of scientific knowledge. This finding can support decisionmaking of policymakers and R&D managers to improve the effectiveness in allocating financial resources in science policies to generate a higher positive scientific and societal impact.","PeriodicalId":44622,"journal":{"name":"Journal of Data and Information Science","volume":"37 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139923542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An explorative study on document type assignment of review articles in Web of Science, Scopus and journals’ websites 关于科学网、Scopus 和期刊网站中综述文章文件类型分配的探索性研究
IF 1.5 3区 管理学
Journal of Data and Information Science Pub Date : 2024-02-19 DOI: 10.2478/jdis-2024-0003
Manman Zhu, Xinyue Lu, Fuyou Chen, Liying Yang, Zhesi Shen
{"title":"An explorative study on document type assignment of review articles in Web of Science, Scopus and journals’ websites","authors":"Manman Zhu, Xinyue Lu, Fuyou Chen, Liying Yang, Zhesi Shen","doi":"10.2478/jdis-2024-0003","DOIUrl":"https://doi.org/10.2478/jdis-2024-0003","url":null,"abstract":"Purpose Accurately assigning the document type of review articles in citation index databases like Web of Science(WoS) and Scopus is important. This study aims to investigate the document type assignation of review articles in Web of Science, Scopus and Publisher’s websites on a large scale. Design/methodology/approach 27,616 papers from 160 journals from 10 review journal series indexed in SCI are analyzed. The document types of these papers labeled on journals’ websites, and assigned by WoS and Scopus are retrieved and compared to determine the assigning accuracy and identify the possible reasons for wrongly assigning. For the document type labeled on the website, we further differentiate them into explicit review and implicit review based on whether the website directly indicates it is a review or not. Findings Overall, WoS and Scopus performed similarly, with an average precision of about 99% and recall of about 80%. However, there were some differences between WoS and Scopus across different journal series and within the same journal series. The assigning accuracy of WoS and Scopus for implicit reviews dropped significantly, especially for Scopus. Research limitations The document types we used as the gold standard were based on the journal websites’ labeling which were not manually validated one by one. We only studied the labeling performance for review articles published during 2017-2018 in review journals. Whether this conclusion can be extended to review articles published in non-review journals and most current situation is not very clear. Practical implications This study provides a reference for the accuracy of document type assigning of review articles in WoS and Scopus, and the identified pattern for assigning implicit reviews may be helpful to better labeling on websites, WoS and Scopus. Originality/value This study investigated the assigning accuracy of document type of reviews and identified the some patterns of wrong assignments.","PeriodicalId":44622,"journal":{"name":"Journal of Data and Information Science","volume":"180 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139923549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extended Lorenz majorization and frequencies of distances in an undirected network 无向网络中的扩展洛伦兹大化和距离频率
IF 1.5 3区 管理学
Journal of Data and Information Science Pub Date : 2024-02-05 DOI: 10.2478/jdis-2024-0007
Leo Egghe
{"title":"Extended Lorenz majorization and frequencies of distances in an undirected network","authors":"Leo Egghe","doi":"10.2478/jdis-2024-0007","DOIUrl":"https://doi.org/10.2478/jdis-2024-0007","url":null,"abstract":"Purpose To contribute to the study of networks and graphs. Design/methodology/approach We apply standard mathematical thinking. Findings We show that the distance distribution in an undirected network Lorenz majorizes the one of a chain. As a consequence, the average and median distances in any such network are smaller than or equal to those of a chain. Research limitations We restricted our investigations to undirected, unweighted networks. Practical implications We are convinced that these results are useful in the study of small worlds and the so-called six degrees of separation property. Originality/value To the best of our knowledge our research contains new network results, especially those related to frequencies of distances.","PeriodicalId":44622,"journal":{"name":"Journal of Data and Information Science","volume":"51 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139756514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new evolutional model for institutional field knowledge flow network 机构领域知识流网络的新演化模型
IF 1.5 3区 管理学
Journal of Data and Information Science Pub Date : 2024-02-05 DOI: 10.2478/jdis-2024-0009
Jinzhong Guo, Kai Wang, Xueqin Liao, Xiaoling Liu
{"title":"A new evolutional model for institutional field knowledge flow network","authors":"Jinzhong Guo, Kai Wang, Xueqin Liao, Xiaoling Liu","doi":"10.2478/jdis-2024-0009","DOIUrl":"https://doi.org/10.2478/jdis-2024-0009","url":null,"abstract":"Purpose This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model (IKM). The purpose is to simulate the construction process of a knowledge flow network using knowledge organizations as units and to investigate its effectiveness in replicating institutional field knowledge flow networks. Design/Methodology/Approach The IKM model enhances the preferential attachment and growth observed in scale-free BA networks, while incorporating three adjustment parameters to simulate the selection of connection targets and the types of nodes involved in the network evolution process Using the PageRank algorithm to calculate the significance of nodes within the knowledge flow network. To compare its performance, the BA and DMS models are also employed for simulating the network. Pearson coefficient analysis is conducted on the simulated networks generated by the IKM, BA and DMS models, as well as on the actual network. Findings The research findings demonstrate that the IKM model outperforms the BA and DMS models in replicating the institutional field knowledge flow network. It provides comprehensive insights into the evolution mechanism of knowledge flow networks in the scientific research realm. The model also exhibits potential applicability to other knowledge networks that involve knowledge organizations as node units. Research Limitations This study has some limitations. Firstly, it primarily focuses on the evolution of knowledge flow networks within the field of physics, neglecting other fields. Additionally, the analysis is based on a specific set of data, which may limit the generalizability of the findings. Future research could address these limitations by exploring knowledge flow networks in diverse fields and utilizing broader datasets. Practical Implications The proposed IKM model offers practical implications for the construction and analysis of knowledge flow networks within institutions. It provides a valuable tool for understanding and managing knowledge exchange between knowledge organizations. The model can aid in optimizing knowledge flow and enhancing collaboration within organizations. Originality/value This research highlights the significance of meso-level studies in understanding knowledge organization and its impact on knowledge flow networks. The IKM model demonstrates its effectiveness in replicating institutional field knowledge flow networks and offers practical implications for knowledge management in institutions. Moreover, the model has the potential to be applied to other knowledge networks, which are formed by knowledge organizations as node units.","PeriodicalId":44622,"journal":{"name":"Journal of Data and Information Science","volume":"51 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139756507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing structure of cross-disciplinary impact of global disciplines: A perspective of the Hierarchy of Science 全球学科交叉影响结构的特点:科学层次的视角
IF 1.5 3区 管理学
Journal of Data and Information Science Pub Date : 2024-02-05 DOI: 10.2478/jdis-2024-0008
Ruolan Liu, Jin Mao, Gang Li, Yujie Cao
{"title":"Characterizing structure of cross-disciplinary impact of global disciplines: A perspective of the Hierarchy of Science","authors":"Ruolan Liu, Jin Mao, Gang Li, Yujie Cao","doi":"10.2478/jdis-2024-0008","DOIUrl":"https://doi.org/10.2478/jdis-2024-0008","url":null,"abstract":"Purpose Interdisciplinary fields have become the driving force of modern science and a significant source of scientific innovation. However, there is still a paucity of analysis about the essential characteristics of disciplines’ cross-disciplinary impact. Design/methodology/approach In this study, we define cross-disciplinary impact on one discipline as its impact to other disciplines, and refer to a three-dimensional framework of variety-balance-disparity to characterize the structure of cross-disciplinary impact. The variety of cross-disciplinary impact of the discipline was defined as the proportion of the high cross-disciplinary impact publications, and the balance and disparity of cross-disciplinary impact were measured as well. To demonstrate the cross-disciplinary impact of the disciplines in science, we chose Microsoft Academic Graph (MAG) as the data source, and investigated the relationship between disciplines’ cross-disciplinary impact and their positions in the Hierarchy of Science (HOS). Findings Analytical results show that there is a significant correlation between the ranking of cross-disciplinary impact and the HOS structure, and that the discipline exerts a greater cross-disciplinary impact on its neighboring disciplines. Several bibliometric features that measure the hardness of a discipline, including the number of references, the number of cited disciplines, the citation distribution, and the Price index have a significant positive effect on the variety of cross-disciplinary impact. The number of references, the number of cited disciplines, and the citation distribution have significant positive and negative effects on balance and disparity, respectively. It is concluded that the less hard the discipline, the greater the cross-disciplinary impact, the higher balance and the lower disparity of cross-disciplinary impact. Research limitations In the empirical analysis of HOS, we only included five broad disciplines. This study also has some biases caused by the data source and applied regression models. Practical implications This study contributes to the formulation of discipline-specific policies and promotes the growth of interdisciplinary research, as well as offering fresh insights for predicting the cross-disciplinary impact of disciplines. Originality/value This study provides a new perspective to properly understand the mechanisms of cross-disciplinary impact and disciplinary integration.","PeriodicalId":44622,"journal":{"name":"Journal of Data and Information Science","volume":"46 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139756519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信