{"title":"HOMOGENEITY AND CLUSTERING","authors":"P. Peebles","doi":"10.2307/j.ctvxrpz4n.5","DOIUrl":"https://doi.org/10.2307/j.ctvxrpz4n.5","url":null,"abstract":"This chapter traces the history of the development of ideas on the large-scale structure of the universe. Modern discussions of the nature of the large-scale matter distribution can be traced back to three central ideas. In 1917, Albert Einstein argued that a closed homogeneous world model fits very well into general relativity theory and the requirements of Mach's principle. In 1926, Edwin Hubble showed that the large-scale distribution of galaxies is close to uniform with no indication of an edge or boundary. In 1927, Georges Lemaître showed that the uniform distribution of galaxies fits very well with the pattern of galaxy redshifts. The chapter then assesses several questions. The first is whether the universe really is homogeneous. Could the homogeneity of the universe have been deduced ahead of time from general principles? Or might it be a useful guide to new principles? It also asks how clustering evolves in an expanding universe, what its origin is, and what this reveals about the nature of the universe.","PeriodicalId":444560,"journal":{"name":"The Large-Scale Structure of the Universe","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128976603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"n-POINT CORRELATION FUNCTIONS:","authors":"","doi":"10.2307/j.ctvxrpz4n.7","DOIUrl":"https://doi.org/10.2307/j.ctvxrpz4n.7","url":null,"abstract":"","PeriodicalId":444560,"journal":{"name":"The Large-Scale Structure of the Universe","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134189452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"APPENDIX","authors":"","doi":"10.2307/j.ctvxrpz4n.11","DOIUrl":"https://doi.org/10.2307/j.ctvxrpz4n.11","url":null,"abstract":"","PeriodicalId":444560,"journal":{"name":"The Large-Scale Structure of the Universe","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126548970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"BEHAVIOR OF IRREGULARITIES IN THE DISTRIBUTION OF MATTER:","authors":"","doi":"10.2307/j.ctvxrpz4n.6","DOIUrl":"https://doi.org/10.2307/j.ctvxrpz4n.6","url":null,"abstract":"","PeriodicalId":444560,"journal":{"name":"The Large-Scale Structure of the Universe","volume":"171 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116602896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RELATIVISTIC THEORY OF THE BEHAVIOR OF IRREGULARITIES IN AN EXPANDING WORLD MODEL","authors":"P. Peebles","doi":"10.2307/j.ctvxrpz4n.9","DOIUrl":"https://doi.org/10.2307/j.ctvxrpz4n.9","url":null,"abstract":"This chapter presents the full relativistic analysis of the evolution of mass clustering. The full relativistic theory is needed to deal with three important aspects of density irregularities in the early universe. First, when the pressure is high the relativistic active gravitational mass and inertial mass associated with pressure affect the dynamics. Second, when the mean density is high, a fluctuation of even modest fractional amount containing a modest mass can have a large effect on the space curvature. One is thus led to deal with the interaction of speculations on the nature of the mass distribution and of the geometry in the early universe. Third, the horizon shrinks to zero at the time of the big bang: the seed fluctuations out of which galaxies might form were larger than the horizon and so were not in causal connection reckoned from the time of the big bang. Of course, this curious point applies as well to the homogeneous background: it was somehow contrived that all parts of the universe now visible were set expanding with quite precise uniformity even though an observer could not have discovered this much before the present epoch.","PeriodicalId":444560,"journal":{"name":"The Large-Scale Structure of the Universe","volume":"45 11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122124469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LIST OF ABBREVIATIONS","authors":"","doi":"10.2307/j.ctvxrpz4n.12","DOIUrl":"https://doi.org/10.2307/j.ctvxrpz4n.12","url":null,"abstract":"","PeriodicalId":444560,"journal":{"name":"The Large-Scale Structure of the Universe","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125774201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ACKNOWLEDGMENTS","authors":"","doi":"10.2307/j.ctvxrpz4n.4","DOIUrl":"https://doi.org/10.2307/j.ctvxrpz4n.4","url":null,"abstract":"","PeriodicalId":444560,"journal":{"name":"The Large-Scale Structure of the Universe","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128439658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DYNAMICS AND STATISTICS","authors":"P. Peebles","doi":"10.2307/j.ctvxrpz4n.8","DOIUrl":"https://doi.org/10.2307/j.ctvxrpz4n.8","url":null,"abstract":"This chapter studies how the n-point correlation functions have proved useful not only as descriptive statistics but also as dynamic variables in the Newtonian theory of the evolution of clustering. It generalizes the functions to mass correlation functions in position and momentum, and derives the BBGKY hierarchy of equations for their evolution. This yields a new way to analyze the evolution of mass clustering in an expanding universe. Of course, the main interest in the approach comes from the thought that the observed galaxy correlation functions may yield useful approximations to the mass correlation functions, so the observations may provide boundary values for the dynamical theory of evolution of the mass correlation functions. The test will be whether one can find a consistent theory for the joint distributions in galaxy positions and velocities.","PeriodicalId":444560,"journal":{"name":"The Large-Scale Structure of the Universe","volume":"171 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116128680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"INDEX","authors":"","doi":"10.2307/j.ctvxrpz4n.14","DOIUrl":"https://doi.org/10.2307/j.ctvxrpz4n.14","url":null,"abstract":"","PeriodicalId":444560,"journal":{"name":"The Large-Scale Structure of the Universe","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133343017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}