{"title":"RELATIVISTIC THEORY OF THE BEHAVIOR OF IRREGULARITIES IN AN EXPANDING WORLD MODEL","authors":"P. Peebles","doi":"10.2307/j.ctvxrpz4n.9","DOIUrl":null,"url":null,"abstract":"This chapter presents the full relativistic analysis of the evolution of mass clustering. The full relativistic theory is needed to deal with three important aspects of density irregularities in the early universe. First, when the pressure is high the relativistic active gravitational mass and inertial mass associated with pressure affect the dynamics. Second, when the mean density is high, a fluctuation of even modest fractional amount containing a modest mass can have a large effect on the space curvature. One is thus led to deal with the interaction of speculations on the nature of the mass distribution and of the geometry in the early universe. Third, the horizon shrinks to zero at the time of the big bang: the seed fluctuations out of which galaxies might form were larger than the horizon and so were not in causal connection reckoned from the time of the big bang. Of course, this curious point applies as well to the homogeneous background: it was somehow contrived that all parts of the universe now visible were set expanding with quite precise uniformity even though an observer could not have discovered this much before the present epoch.","PeriodicalId":444560,"journal":{"name":"The Large-Scale Structure of the Universe","volume":"45 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Large-Scale Structure of the Universe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvxrpz4n.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter presents the full relativistic analysis of the evolution of mass clustering. The full relativistic theory is needed to deal with three important aspects of density irregularities in the early universe. First, when the pressure is high the relativistic active gravitational mass and inertial mass associated with pressure affect the dynamics. Second, when the mean density is high, a fluctuation of even modest fractional amount containing a modest mass can have a large effect on the space curvature. One is thus led to deal with the interaction of speculations on the nature of the mass distribution and of the geometry in the early universe. Third, the horizon shrinks to zero at the time of the big bang: the seed fluctuations out of which galaxies might form were larger than the horizon and so were not in causal connection reckoned from the time of the big bang. Of course, this curious point applies as well to the homogeneous background: it was somehow contrived that all parts of the universe now visible were set expanding with quite precise uniformity even though an observer could not have discovered this much before the present epoch.