{"title":"A saliency model-oriented convolution neural network for cloud detection in remote sensing images","authors":"Jun Zhang, Jun-Jun Liu","doi":"10.3233/mgs-210352","DOIUrl":"https://doi.org/10.3233/mgs-210352","url":null,"abstract":"Remote sensing is an indispensable technical way for monitoring earth resources and environmental changes. However, optical remote sensing images often contain a large number of cloud, especially in tropical rain forest areas, make it difficult to obtain completely cloud-free remote sensing images. Therefore, accurate cloud detection is of great research value for optical remote sensing applications. In this paper, we propose a saliency model-oriented convolution neural network for cloud detection in remote sensing images. Firstly, we adopt Kernel Principal Component Analysis (KCPA) to unsupervised pre-training the network. Secondly, small labeled samples are used to fine-tune the network structure. And, remote sensing images are performed with super-pixel approach before cloud detection to eliminate the irrelevant backgrounds and non-clouds object. Thirdly, the image blocks are input into the trained convolutional neural network (CNN) for cloud detection. Meanwhile, the segmented image will be recovered. Fourth, we fuse the detected result with the saliency map of raw image to further improve the accuracy of detection result. Experiments show that the proposed method can accurately detect cloud. Compared to other state-of-the-art cloud detection method, the new method has better robustness.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85985217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Image compression and encryption based on integer wavelet transform and hybrid hyperchaotic system","authors":"Rajamandrapu Srinivas, N. Mayur","doi":"10.3233/mgs-210351","DOIUrl":"https://doi.org/10.3233/mgs-210351","url":null,"abstract":"Compression and encryption of images are emerging as recent topics in the area of research to improve the performance of data security. A joint lossless image compression and encryption algorithm based on Integer Wavelet Transform (IWT) and the Hybrid Hyperchaotic system is proposed to enhance the security of data transmission. Initially, IWT is used to compress the digital images and then the encryption is accomplished using the Hybrid Hyperchaotic system. A Hybrid Hyperchaotic system; Fractional Order Hyperchaotic Cellular Neural Network (FOHCNN) and Fractional Order Four-Dimensional Modified Chua’s Circuit (FOFDMCC) is used to generate the pseudorandom sequences. The pixel substitution and scrambling are realized simultaneously using Global Bit Scrambling (GBS) that improves the cipher unpredictability and efficiency. In this study, Deoxyribonucleic Acid (DNA) sequence is adopted instead of a binary operation, which provides high resistance to the cipher image against crop attack and salt-and-pepper noise. It was observed from the simulation outcome that the proposed Hybrid Hyperchaotic system with IWT demonstrated more effective performance in image compression and encryption compared with the existing models in terms of parameters such as unified averaged changed intensity, a number of changing pixels rate, and correlation coefficient.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77688763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel energy-aware approach to resource allocation in cloud computing","authors":"K. Saidi, O. Hioual, Abderrahim Siam","doi":"10.3233/mgs-210350","DOIUrl":"https://doi.org/10.3233/mgs-210350","url":null,"abstract":"In this paper, we address the issue of resource allocation in a Cloud Computing environment. Since the need for cloud resources has led to the rapid growth of data centers and the waste of idle resources, high-power consumption has emerged. Therefore, we develop an approach that reduces energy consumption. Decision-making for adequate tasks and virtual machines (VMs) with their consolidation minimizes this latter. The aim of the proposed approach is energy efficiency. It consists of two processes; the first one allows the mapping of user tasks to VMs. Whereas, the second process consists of mapping virtual machines to the best location (physical machines). This paper focuses on this latter to develop a model by using a deep neural network and the ELECTRE methods supported by the K-nearest neighbor classifier. The experiments show that our model can produce promising results compared to other works of literature. This model also presents good scalability to improve the learning, allowing, thus, to achieve our objectives.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89725364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Urban street scene analysis using lightweight multi-level multi-path feature aggregation network","authors":"Tanmay Singha, Duc-Son Pham, A. Krishna","doi":"10.3233/mgs-210353","DOIUrl":"https://doi.org/10.3233/mgs-210353","url":null,"abstract":"Urban street scene analysis is an important problem in computer vision with many off-line models achieving outstanding semantic segmentation results. However, it is an ongoing challenge for the research community to develop and optimize the deep neural architecture with real-time low computing requirements whilst maintaining good performance. Balancing between model complexity and performance has been a major hurdle with many models dropping too much accuracy for a slight reduction in model size and unable to handle high-resolution input images. The study aims to address this issue with a novel model, named M2FANet, that provides a much better balance between model’s efficiency and accuracy for scene segmentation than other alternatives. The proposed optimised backbone helps to increase model’s efficiency whereas, suggested Multi-level Multi-path (M2) feature aggregation approach enhances model’s performance in the real-time environment. By exploiting multi-feature scaling technique, M2FANet produces state-of-the-art results in resource-constrained situations by handling full input resolution. On the Cityscapes benchmark data set, the proposed model produces 68.5% and 68.3% class accuracy on validation and test sets respectively, whilst having only 1.3 million parameters. Compared with all real-time models of less than 5 million parameters, the proposed model is the most competitive in both performance and real-time capability.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83544982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Broker-based optimization of SLA negotiations in cloud computing","authors":"P. Bharti, R. Ranjan, B. Prasad","doi":"10.3233/mgs-210349","DOIUrl":"https://doi.org/10.3233/mgs-210349","url":null,"abstract":"Cloud computing provisions and allocates resources, in advance or real-time, to dynamic applications planned for execution. This is a challenging task as the Cloud-Service-Providers (CSPs) may not have sufficient resources at all times to satisfy the resource requests of the Cloud-Service-Users (CSUs). Further, the CSPs and CSUs have conflicting interests and may have different utilities. Service-Level-Agreement (SLA) negotiations among CSPs and CSUs can address these limitations. User Agents (UAs) negotiate for resources on behalf of the CSUs and help reduce the overall costs for the CSUs and enhance the resource utilization for the CSPs. This research proposes a broker-based mediation framework to optimize the SLA negotiation strategies between UAs and CSPs in Cloud environment. The impact of the proposed framework on utility, negotiation time, and request satisfaction are evaluated. The empirical results show that these strategies favor cooperative negotiation and achieve significantly higher utilities, higher satisfaction, and faster negotiation speed for all the entities involved in the negotiation.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81545142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling of an active multi-agent environment for the design of a multi-criteria group decision support system","authors":"Amel Kahina Nemdili, D. Hamdadou","doi":"10.3233/MGS-210344","DOIUrl":"https://doi.org/10.3233/MGS-210344","url":null,"abstract":"In the present study, the research problem concerns business intelligence, more precisely collaborative decision-making. The authors propose a complete modeling of a multi-agent active environment for the design of a multicriteria group decision support system dedicated to the spatial problem of localization in territory planning. The proposed model is called ActiveGDSS (Active Group Decision Support System) which uses a coupling between a geographic information system and a multi agents system and is endowed by a new negotiation protocol based on the concession allowing reaching to a consensus which satisfies the territorial actors. The main purpose is to integrate the principle of contextual activation in the modeling of the system which makes the environment an active entity. The main advantages of contextual activation are efficiency gain in terms of execution, better flexibility and reuse of agent behaviors.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80601203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A collaborative predictive multi-agent system for forecasting carbon emissions related to energy consumption","authors":"S. Bouziane, Tarek Khadir, J. Dugdale","doi":"10.3233/MGS-210342","DOIUrl":"https://doi.org/10.3233/MGS-210342","url":null,"abstract":"Energy production and consumption are one of the largest sources of greenhouse gases (GHG), along with industry, and is one of the highest causes of global warming. Forecasting the environmental cost of energy production is necessary for better decision making and easing the switch to cleaner energy systems in order to reduce air pollution. This paper describes a hybrid approach based on Artificial Neural Networks (ANN) and an agent-based architecture for forecasting carbon dioxide (CO2) issued from different energy sources in the city of Annaba using real data. The system consists of multiple autonomous agents, divided into two types: firstly, forecasting agents, which forecast the production of a particular type of energy using the ANN models; secondly, core agents that perform other essential functionalities such as calculating the equivalent CO2 emissions and controlling the simulation. The development is based on Algerian gas and electricity data provided by the national energy company. The simulation consists firstly of forecasting energy production using the forecasting agents and calculating the equivalent emitted CO2. Secondly, a dedicated agent calculates the total CO2 emitted from all the available sources. It then computes the benefits of using renewable energy sources as an alternative way to meet the electric load in terms of emission mitigation and economizing natural gas consumption. The forecasting models showed satisfying results, and the simulation scenario showed that using renewable energy can help reduce the emissions by 369 tons of CO2 (3%) per day.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84976237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Agent-based access control framework for enterprise content management","authors":"Nadia Hocine","doi":"10.3233/mgs-210346","DOIUrl":"https://doi.org/10.3233/mgs-210346","url":null,"abstract":"Telework is an important alternative to work that seeks to enhance employees’ safety and well-being while reducing the company costs. Employees can work anytime, any where and under high mobility conditions using new devices. Therefore, the access control of remote exchanges of Enterprise Content Management systems (ECM) have to take into consideration the diversity of users’ devices and context conditions in a telework open network. Different access control models were proposed in the literature to deal with the dynamic nature of users’ context and devices. However, most access control models rely on a centralized management of permissions by an authorization entity which can reduce its performance with the increase of number of users and requests in an open network. Moreover, they often depend on the administrator’s intervention to add new devices’ authorization and to set permissions on resources. In this paper, we suggest a distributed management of access control for telework open networks that focuses on an agent-based access control framework. The framework uses a multi-level rule engine to dynamically generate policies. We conducted a usability test and an experiment to evaluate the security performance of the proposed framework. The result of the experiment shows that the ability to resist deny of service attacks over time increased in the proposed distributed access control management compared with the centralized approach.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79808990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adaptive window based fall detection using anomaly identification in fog computing scenario","authors":"Rashmi Shrivastava, Manju Pandey","doi":"10.3233/MGS-210341","DOIUrl":"https://doi.org/10.3233/MGS-210341","url":null,"abstract":"Human fall detection is a subcategory of ambient assisted living. Falls are dangerous for old aged people especially those who are unaccompanied. Detection of falls as early as possible along with high accuracy is indispensable to save the person otherwise it may lead to physical disability even death also. The proposed fall detection system is implemented in the edge computing scenario. An adaptive window-based approach is proposed here for feature extraction because window size affects the performance of the classifier. For training and testing purposes two public datasets and our collected dataset have been used. Anomaly identification based on a support vector machine with an enhanced chi-square kernel is used here for the classification of Activities of Daily Living (ADL) and fall activities. Using the proposed approach 100% sensitivity and 98.08% specificity have been achieved which are better when compared with three recent research based on unsupervised learning. One of the important aspects of this study is that it is also validated on actual real fall data and got 100% accuracy. This complete fall detection model is implemented in the fog computing scenario. The proposed approach of adaptive window based feature extraction is better than static window based approaches and three recent fall detection methods.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77048153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Rwegasira, I. Dhaou, M. Ebrahimi, Anders Hallén, N. Mvungi, H. Tenhunen
{"title":"Energy trading and control of islanded DC microgrid using multi-agent systems","authors":"D. Rwegasira, I. Dhaou, M. Ebrahimi, Anders Hallén, N. Mvungi, H. Tenhunen","doi":"10.3233/mgs-210345","DOIUrl":"https://doi.org/10.3233/mgs-210345","url":null,"abstract":"The energy sector is experiencing a revolution that is fuelled by a multitude of factors. Among them are the aging grid system, the need for cleaner energy and the increasing demands on energy sector. The demand-response program is an advanced feature in smart grid that strives to match suppliers to their demands using price-based and incentive programs. The objective of the work is to analyse the performance of the load shedding technique using dynamic pricing algorithm. The system was designed using multi-agent system (MAS) for a DC microgrid capable of real-time monitoring and controlling of power using price-based demand-response program. As a proof of concept, the system was implemented using intelligent physical agents, Java Agent Development Framework (JADE), and agent simulation platform (REPAST) with two residential houses (non-critical loads) and one hospital (critical load). The architecture has been implemented using embedded devices, relays, and sensors to control the operations of load shedding and energy trading in residential areas that have no access to electricity. The measured results show that the system can shed the load with the latency of less than 600 ms, and energy cost saving with an individual houses by 80% of the total cost with 2USD per day. The outcome of the studies demonstrates the effectiveness of the proposed multi-agent approach for real-time operation of a microgrid and the implementation of demand-response program.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77574032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}