{"title":"Fabrication and characterization of a TiO2 nanoparticles polypropylene membrane: application in indoor air quality maintenance","authors":"A. Favas, B. Bavanish","doi":"10.15251/jobm.2023.153.81","DOIUrl":"https://doi.org/10.15251/jobm.2023.153.81","url":null,"abstract":"The production of innovative materials with improved features applicable in many domains is a key application of nanotechnology with far-reaching implications for modern society. Nanoparticle-based polymer composites are quickly becoming one of the most promising new materials, with potential uses spanning the chemical, physical, and biological sciences as well as engineering. Application of nanoparticle-based polymer composites for indoor air quality maintenance was discussed, as were their production, hybrid functionalization, and feasible synthesis procedures (filter membrane). The batch foaming procedure has been used to create foam from the thermoplastic polymer polypropylene (PP). Foaming is a blown process, where carbon dioxide is utilised as the blowing agent. Nanoparticles of titanium oxide (nano TiO2) are also used for reinforcement. Scanning electron microscopy (SEM) was utilised to investigate the NTPMs' surface morphology, while other physio-chemical characteristics were investigated by means of various analytical methods, including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermo-gravimetric analysis (TGA). The adsorption isotherm and kinetics of water vapours were analysed to get insight into the water vapour adsorption characteristics of the NTPMs. The kinetics of adsorption pointed to a combination of intraparticle diffusion and liquid field driving processes for the transport of water vapours. Because of their high dehumidification effectiveness, synthetic NTPMs have the potential to replace many of the currently used traditional solid desiccant materials","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67044124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Tamil Selvi, R. Uthrakumar, C. Inmozhi, K. Kaviyarasu
{"title":"Biosynthesis and characterization of copper nanoparticles with andrographis paniculata for antimicrobial applications","authors":"E. Tamil Selvi, R. Uthrakumar, C. Inmozhi, K. Kaviyarasu","doi":"10.15251/jobm.2023.153.93","DOIUrl":"https://doi.org/10.15251/jobm.2023.153.93","url":null,"abstract":"This study presents a synthesis of copper nanoparticles in which an intermediate aqueous extract of the leaves of Andrographis paniculata. The synthesis copper nanoparticles (CuNPs) was supervised by UV-visible spectroscopy at room temperature. FTIR analysis prepared nanoparticles exhibited the attendance of comparable peaks established in the leaves extract spectra. XRD analysis inveterate the crystalline structure of synthetic copper nanoparticles. SEM's images presented that greatest balls were a spherical, like a shaped one. Subsequently, CuNPs was further analyzed for anti-bacterial effects from the Gram positive and Gram negative was obviously detected.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67044952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An impact of different injection timing operating on chlorellea emersonii methyl ester (CEME) with best fuel (BF)","authors":"K. Rangasamy, N. Panchacharam","doi":"10.15251/jobm.2022.144.191","DOIUrl":"https://doi.org/10.15251/jobm.2022.144.191","url":null,"abstract":"Biodiesel is a clean-burning, oxygenated monoalkyl-ester fuel manufactured from natural, renewable sources like new/used vegetable oils and animal fats. The injection time has a significant impact on engine performance, particularly pollutant emissions. The purpose of this research is to see if Chlorellea Emersonii methyl ester (CEME) can be used as a fuel alternative in a compression ignition (CI) engine. The CEME was synthesised using a transesterification technique, and the engine parameters (performance, emission, and combustion) were investigated using 20 (v/v%) biodiesel blends at retard, standard, and advanced injection timings (IT). In this study an alteration in injection timing were done with TRC and BF combination. Other than conventional injection timing of 23o bTDC three more injection timing included ie 24o bTDC (advance IT), 21o bTDC (retarded IT) and 22o bTDC (retarded IT). Outcome results showed 22o bTDC(retarded IT) with 2.12% improvement in BTE followed by 24.5%,35.15% and 90.2% reduction in HC,CO and smoke.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44343882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Samidurai, U. Karunanithi, S. Prabahar, S. Srikanth, R. Karunakaran, K. Karthikadevi
{"title":"Structural and optical properties of Zn doped Bi2O3 thin films prepared by chemical route with effect of bath temperatures","authors":"T. Samidurai, U. Karunanithi, S. Prabahar, S. Srikanth, R. Karunakaran, K. Karthikadevi","doi":"10.15251/jobm.2022.144.211","DOIUrl":"https://doi.org/10.15251/jobm.2022.144.211","url":null,"abstract":"The present work attempts to synthesize Zn doped Bismuth Oxide thin films deposited effectively on to micro glass substrates at different bath temperatures by Chemical Bath Route. The films were characterized by XRD, SEM, EDAX and optical analysis. XRD analysis reveals that all the films belong to monoclinic in polycrystalline structure with preferred orientation along (012). The optical energy gap values of Zn doped Bi2O3 thin films were in the range 2.21- 2.81 eV which depend on deposition temperatures. Zn - Bi2O3 thin films can be used in photo voltaic cells, gas sensors, optical coatings, flat-panel displays, micro electronics, light emitting diodes, batteries, super capacitors and fuel cell industries.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45500057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Abdalameer, S. N. Mazhir, H. M. Salim, J. K. Hammood, Z. H. Abdul Raheem
{"title":"Design of micro-jet plasma system: a novel nanoparticles manufacturing method in atmospheric pressure","authors":"N. Abdalameer, S. N. Mazhir, H. M. Salim, J. K. Hammood, Z. H. Abdul Raheem","doi":"10.15251/jobm.2022.144.203","DOIUrl":"https://doi.org/10.15251/jobm.2022.144.203","url":null,"abstract":"Micro jet atmospheric (MPJ) plasma was first utilized to create nano-sized crystals. Nanosized particles may have advantageous characteristics such as better internal quality and dissolving rates of the product compared to traditional crystalline goods. A nebulizer system sprays an aerosol solution into plasma by use of a carrier gas in a cold plasma crystal (argon). The plasma warms and loads the droplets causing solvent and columbic fission evaporation, and then the nucleation and crystal formation start within the limited volume given by the tiny drops. This produces nano-sized crystals. MPJ was used to establish the operating parameters for producing nano-sized ZnSe material crystals using electron microscope transmitting and X-ray powder diffraction tests as well as sensitivity testing have been carried out. Sensitivity tests showed lower friction sensitivity for the nano-scale product, suggesting a better internal quality of the crystal product.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42353812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Kazimov, G. Ibragimov, G. I. Isakov, B. G. Ibragimov
{"title":"Physical-chemical properties of InSb+Mg3Sb2 eutectic systems: synthesis, characterization, and applications","authors":"M. Kazimov, G. Ibragimov, G. I. Isakov, B. G. Ibragimov","doi":"10.15251/jobm.2022.144.187","DOIUrl":"https://doi.org/10.15251/jobm.2022.144.187","url":null,"abstract":"InSb+Mg3Sb2 systems are synthesized by the vertical Bridgman–Stockbarger method. InSb and Mg3Sb2, a form of lamellar eutectic. XRD analysis and microstructural study of InSb+Mg3Sb2 composites show that Mg3Sb2 lamellar are uniformly distributed in the InSb matrices. The initial and final melting temperatures for InSb+Mg3Sb2 eutectic alloys are 770K and 772K, respectively.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45196188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomimetic tissue regeneration using electrospun nanofibrous scaffolds","authors":"H. Owida, M. Al-Ayyad, M. Rashid","doi":"10.15251/jobm.2022.144.169","DOIUrl":"https://doi.org/10.15251/jobm.2022.144.169","url":null,"abstract":"An emerging field of tissue engineering combines medical, biological, and engineering principles to produce tissue-engineered constructs that regenerate, preserve, or slightly enhance the functions of natural tissue. By creating structures that replicate the extracellular matrix, oxygen and nutrients will be transmitted more effectively while releasing toxins during tissue repair, all while creating mature tissues. Three-dimensional nanostructures for tissue engineering have been the focus of numerous studies over the last few years. Electrospinning is a highly effective technique in this category. The last few decades, numerous nanofibrous scaffolds have been developed for tissue repair and restoration. Nanofibrous meshes as tissue engineered scaffolds for various tissues, such as neural, cardiovascular, skin, cartilage, and tendon are discussed in this article. In addition, the current article discusses recent advancements in tissue regeneration as well as challenges associated with electrospinning.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44507492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Raja, A. R. Venis, C. Kalaivanan, R. Padmavathi
{"title":"Solar expedited photodegradation of orange-g using H2O2","authors":"R. Raja, A. R. Venis, C. Kalaivanan, R. Padmavathi","doi":"10.15251/jobm.2022.144.145","DOIUrl":"https://doi.org/10.15251/jobm.2022.144.145","url":null,"abstract":"Decolourisation and degradation of azo dye Orange G was carried out by using the solarassisted photodegradation process using H2O2 and the effect of various parameters on decolourisation and degradation were analysed. Dye solutions of concentration 100 mg/L treated with 30% H2O2 were taken in 250 ml conical flasks and they were exposed to sunlight in the lux intensity range of 60,000 to 90,000 lux to study its decolourisation and degradation. Effect of various parameters on decolourisation and degradation of dye like the effect of initial pH, the effect of initial H2O2concentration, the effect of initial dye concentration, the effect of additives like chloride and dihydrogen phosphate of concentration 1 M, the effect of solar light intensity, the effect of temperature were studied as kinetic studies. Optimum pH was found to be 11 and optimum H2O2 concentration was found to be 250 mM to achieve 100 % decolourisation of the dye within the shortest time duration of 1.5 hours. Kinetic studies done on the effect of pH and the effect of H2O2 concentration also provided evidence for that. Effect of chloride ion has lead to enhancement in the rate of decolourisation whereas addition of dihydrogen phosphate ion inhibits the rate of decolourisation. An increase in solar light intensity has lead to increase in the rate of decolourisation. An increase in temperature has lead to increase in the rate of decolourisation. UV spectrum was taken for the dye and degraded dye to study the extent of degradation of the dye. COD and TOC removal were also studied to know about the mineralisation of the dye.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45389280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Indigo carmine pigment adsorption utilizing MgO nanostructures fabricated from pimpinella anisum extract","authors":"N. Elamin","doi":"10.15251/jobm.2022.143.115","DOIUrl":"https://doi.org/10.15251/jobm.2022.143.115","url":null,"abstract":"The effectiveness of MgO nanostructures for removing indigo carmine (IC) dye from an aqueous solution is demonstrated in this article. The nanomaterials were synthesized using MgCl2.2H2O and NaOH in a medium containing Pimpinella anisum extract. The microstructure of the samples was investigated using XRD, SEM, EDX, BET, and FTIR. Additionally, the IC dye uptake and adsorption processes were investigated using a MgO sorbent. To synthesize the MgO1 and MgO2 materials, the adsorption kinetics of IC dye, the starting pH of IC dye solution, and contact time were optimized. The maximal theoretical adsorption efficiency of the MgO1 and MgO2 adsorbents for IC dye was 559.2 and 492.6 mg/g, respectively, according to the Langmuir isotherm adsorption model. Further, recycling the MgO1 adsorbent proved conceivable due to its ease of collection and re-use following five adsorption-regeneration cycles.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48383978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis and analysis of flakes graphene oxide","authors":"Rashad Gabil Abaszade","doi":"10.15251/jobm.2022.143.107","DOIUrl":"https://doi.org/10.15251/jobm.2022.143.107","url":null,"abstract":"The presented article is devoted to the synthesis and analysis of flakes graphene oxide obtained by the Hammers method. The synthesized flakes graphene oxide was studied using SEM, EDX, X-ray diffraction, Raman spectroscopy, element analysis, temperature dependent of resistance and IR spectroscopy. As a result of calculating the results of X-ray analysis according to the Debye-Scherer’s formula, the thickness of graphite flakes was about 12,9nm and the number of layers was 38. The result of the Raman analysis show that high quality flakes grapheme oxide was obtained. Based on the result of elementary analysis of grapheme oxide mass, the C/O ratio was determined to be 1,42. The grapheme layers inside the sample were 3,31nm thick and 14,8nm long by scanning electron microscope. The temperature variation of the resistance was determined. IR spectroscopy shows the results of the absorption of electromagnetic radiation in the infrared range by atomic groups of reduced grapheme oxide and the excitation of the molecule by light quanta. When a molecule is irradiated with infrared radiation, it is shown that only quantum absorption quantities are formed according to the frequencies of the molecules.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48416434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}