International Conference on Machine Learning, Optimization, and Data Science最新文献

筛选
英文 中文
Explainable AI as a Social Microscope: A Case Study on Academic Performance 可解释的人工智能作为社会显微镜:一个关于学习成绩的案例研究
International Conference on Machine Learning, Optimization, and Data Science Pub Date : 2020-06-04 DOI: 10.1007/978-3-030-64583-0_24
Anahit Sargsyan, A. Karapetyan, W. Woon, Aamena Alshamsi
{"title":"Explainable AI as a Social Microscope: A Case Study on Academic Performance","authors":"Anahit Sargsyan, A. Karapetyan, W. Woon, Aamena Alshamsi","doi":"10.1007/978-3-030-64583-0_24","DOIUrl":"https://doi.org/10.1007/978-3-030-64583-0_24","url":null,"abstract":"","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129471711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sparse Perturbations for Improved Convergence in Stochastic Zeroth-Order Optimization 改进零阶随机优化收敛性的稀疏摄动
International Conference on Machine Learning, Optimization, and Data Science Pub Date : 2020-06-02 DOI: 10.1007/978-3-030-64580-9_5
Mayumi Ohta, Nathaniel Berger, Artem Sokolov, S. Riezler
{"title":"Sparse Perturbations for Improved Convergence in Stochastic Zeroth-Order Optimization","authors":"Mayumi Ohta, Nathaniel Berger, Artem Sokolov, S. Riezler","doi":"10.1007/978-3-030-64580-9_5","DOIUrl":"https://doi.org/10.1007/978-3-030-64580-9_5","url":null,"abstract":"","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124042885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
On Bayesian Search for the Feasible Space Under Computationally Expensive Constraints 计算昂贵约束下可行空间的贝叶斯搜索
International Conference on Machine Learning, Optimization, and Data Science Pub Date : 2020-04-23 DOI: 10.1007/978-3-030-64580-9_44
A. Rahat, M. Wood
{"title":"On Bayesian Search for the Feasible Space Under Computationally Expensive Constraints","authors":"A. Rahat, M. Wood","doi":"10.1007/978-3-030-64580-9_44","DOIUrl":"https://doi.org/10.1007/978-3-030-64580-9_44","url":null,"abstract":"","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125965879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Sparsity Meets Robustness: Channel Pruning for the Feynman-Kac Formalism Principled Robust Deep Neural Nets 稀疏性满足鲁棒性:Feynman-Kac形式原则鲁棒深度神经网络的通道修剪
International Conference on Machine Learning, Optimization, and Data Science Pub Date : 2020-03-02 DOI: 10.1007/978-3-030-64580-9_31
Thu Dinh, Bao Wang, A. Bertozzi, S. Osher
{"title":"Sparsity Meets Robustness: Channel Pruning for the Feynman-Kac Formalism Principled Robust Deep Neural Nets","authors":"Thu Dinh, Bao Wang, A. Bertozzi, S. Osher","doi":"10.1007/978-3-030-64580-9_31","DOIUrl":"https://doi.org/10.1007/978-3-030-64580-9_31","url":null,"abstract":"","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122298204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Can Big Data Help to Predict Conditional Stock Market Volatility? An Application to Brexit 大数据能帮助预测有条件的股市波动吗?英国脱欧申请
International Conference on Machine Learning, Optimization, and Data Science Pub Date : 2020-02-08 DOI: 10.1007/978-3-030-64583-0_36
V. Bellini, Massimo Guidolin, Manuela Pedio
{"title":"Can Big Data Help to Predict Conditional Stock Market Volatility? An Application to Brexit","authors":"V. Bellini, Massimo Guidolin, Manuela Pedio","doi":"10.1007/978-3-030-64583-0_36","DOIUrl":"https://doi.org/10.1007/978-3-030-64583-0_36","url":null,"abstract":"","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"437 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132862133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Robust Generative Restricted Kernel Machines using Weighted Conjugate Feature Duality 基于加权共轭特征对偶的鲁棒生成约束核机
International Conference on Machine Learning, Optimization, and Data Science Pub Date : 2020-02-04 DOI: 10.1007/978-3-030-64583-0_54
Arun Pandey, J. Schreurs, J. Suykens
{"title":"Robust Generative Restricted Kernel Machines using Weighted Conjugate Feature Duality","authors":"Arun Pandey, J. Schreurs, J. Suykens","doi":"10.1007/978-3-030-64583-0_54","DOIUrl":"https://doi.org/10.1007/978-3-030-64583-0_54","url":null,"abstract":"","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122618710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Investigating the Compositional Structure Of Deep Neural Networks 研究深度神经网络的组成结构
International Conference on Machine Learning, Optimization, and Data Science Pub Date : 2020-02-01 DOI: 10.1007/978-3-030-64583-0_30
Francesco Craighero, Fabrizio Angaroni, Alex Graudenzi, Fabio Stella, M. Antoniotti
{"title":"Investigating the Compositional Structure Of Deep Neural Networks","authors":"Francesco Craighero, Fabrizio Angaroni, Alex Graudenzi, Fabio Stella, M. Antoniotti","doi":"10.1007/978-3-030-64583-0_30","DOIUrl":"https://doi.org/10.1007/978-3-030-64583-0_30","url":null,"abstract":"","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132655477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Unsupervisedly Learned Representations: Should the Quest be Over? 无监督学习表征:任务应该结束吗?
International Conference on Machine Learning, Optimization, and Data Science Pub Date : 2020-01-21 DOI: 10.1007/978-3-030-64580-9_29
D. Nissani
{"title":"Unsupervisedly Learned Representations: Should the Quest be Over?","authors":"D. Nissani","doi":"10.1007/978-3-030-64580-9_29","DOIUrl":"https://doi.org/10.1007/978-3-030-64580-9_29","url":null,"abstract":"","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128089476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian optimization with local search 局部搜索的贝叶斯优化
International Conference on Machine Learning, Optimization, and Data Science Pub Date : 2019-11-20 DOI: 10.1007/978-3-030-64580-9_30
Yuzhou Gao, Tengchao Yu, Jinglai Li
{"title":"Bayesian optimization with local search","authors":"Yuzhou Gao, Tengchao Yu, Jinglai Li","doi":"10.1007/978-3-030-64580-9_30","DOIUrl":"https://doi.org/10.1007/978-3-030-64580-9_30","url":null,"abstract":"","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121328563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
State Representation Learning from Demonstration 从示范中学习国家代表
International Conference on Machine Learning, Optimization, and Data Science Pub Date : 2019-09-15 DOI: 10.1007/978-3-030-64580-9_26
Astrid Merckling, Alexandre Coninx, Loic Cressot, S. Doncieux, Nicolas Perrin
{"title":"State Representation Learning from Demonstration","authors":"Astrid Merckling, Alexandre Coninx, Loic Cressot, S. Doncieux, Nicolas Perrin","doi":"10.1007/978-3-030-64580-9_26","DOIUrl":"https://doi.org/10.1007/978-3-030-64580-9_26","url":null,"abstract":"","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"92 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116296661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信