{"title":"Prolactin Proteoform Pattern Changed in Human Pituitary Adenoma Relative to Control Pituitary Tissues","authors":"X. Zhan, Shehua Qian","doi":"10.5772/intechopen.92836","DOIUrl":"https://doi.org/10.5772/intechopen.92836","url":null,"abstract":"PRL gene-encoded prolactin is synthesized in the ribosome in the pituitary and then secretes into blood circulation to reach its target organ and exerts its biological roles, for example, involving in production, growth, development, immunoregulation, and metabolism. Multiple post-translational modifications and other unknown factors might be involved in this process to cause different prolactin proteoforms with differential isoelectric point (p I ) and relative mass ( M r ). Pituitary adenomas are the common disease occurring in pituitary organ to affect the endocrine system. Two-dimensional gel electrophoresis (2DGE) was used to separate prolactin proteoforms according to their p I and M r , followed by identification with Western blot and mass spectrometry (MS) analyses. Six prolactin proteoforms were identified in control pituitary tissues, and this prolactin proteoform pattern was significantly changed in different hormone subtypes of nonfunctional pituitary adenomas (NF − , LH + , FSH + , and LH + / FSH + ) and prolactinomas (PRL + ). Further, bioinformatics analysis revealed that different prolactin proteoforms might bind to different short- or long-PRL receptor-mediated signaling pathways. These findings clearly demonstrated that prolactin proteoform pattern existed in human pituitary and changed in different subtypes of pituitary adenomas. It is the scientific data to in-depth study prolactin functions, and to discover the prolactin proteoform biomarkers for PRL-related adenomas. controls, with 2DGE and MS. These findings provide the scientific data to in-depth study the PRL functions and to discover PRL proteoform biomarker for PRL-related adenomas.","PeriodicalId":429683,"journal":{"name":"Proteoforms - Concept and Applications in Medical Sciences","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132541401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proteoforms: General Concepts and Methodological Process for Identification","authors":"J. S. Araújo, O. Machado","doi":"10.5772/intechopen.89914","DOIUrl":"https://doi.org/10.5772/intechopen.89914","url":null,"abstract":"The term proteoform is used to denote all the molecular forms in which the protein product of a single gene can be found. The most frequent processes that lead to transcript modification and the biological implications of these changes observed in the final protein product will be discussed. Proteoforms arising from genetic variations, alternatively spliced RNA transcripts and post-translational modifications will be commented. This chapter will present an evolution of the techniques used to identify the proteoforms and the importance of this identification for understanding of biological processes. This chapter highlights the fundamental concepts in the field of top-down mass spectrometry (TDMS), and provides numerous examples for the use of knowledge obtained from the identification of proteoforms. The identification of mutant proteins is one of the emerging areas of proteogenomics and has the potential to recognize novel disease biomarkers and may point to useful targets for identification of therapeutic approaches.","PeriodicalId":429683,"journal":{"name":"Proteoforms - Concept and Applications in Medical Sciences","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114727712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proteoforms in Acute Leukemia: Evaluation of Age- and Disease-Specific Proteoform Patterns","authors":"F. Hoff, A. Dijk, S. Kornblau","doi":"10.5772/intechopen.90329","DOIUrl":"https://doi.org/10.5772/intechopen.90329","url":null,"abstract":"Acute leukemia are a heterogeneous group of malignant diseases of the bone marrow that occur at all ages. Acute lymphoid leukemia (ALL) accounts for about 80% of all pediatric leukemia patients, whereas acute myeloid leukemia (AML) is more common in adults compared to pediatric patients. Despite similar patterns in the pathogenesis of acute leukemia in children and adults, clinical outcome in response to therapy differs substantially. Studying proteoforms in acute leukemia in children and adults, might identify similarities and differences in crucial signaling pathways that play a key role in the development or progression of the disease. In this chapter we will discuss how the study of proteoforms in acute leukemia could potentially contribute to a better understanding of the leukemogenesis, can help to identify effective targets for specific targeted treatment approaches in different subgroups of age and disease, and could aid the development of reliable biomarkers for prognostic stratification.","PeriodicalId":429683,"journal":{"name":"Proteoforms - Concept and Applications in Medical Sciences","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126435742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Hidayah, Manasia Gaikwad, Laura Heikaus, H. Schlüter
{"title":"Preparing Proteoforms of Therapeutic Proteins for Top-Down Mass Spectrometry","authors":"S. Hidayah, Manasia Gaikwad, Laura Heikaus, H. Schlüter","doi":"10.5772/intechopen.89644","DOIUrl":"https://doi.org/10.5772/intechopen.89644","url":null,"abstract":"A characteristic of many proteoforms, derived from a single gene, is their similarity regarding the composition of atoms, making their analysis very challenging. Many overexpressed recombinant proteins are strongly associated with this problem, especially recombinant therapeutic glycoproteins from large-scale productions. In contrast to small molecule drugs, which consist of a single defined molecule, therapeutic protein preparations are heterogenous mixtures of dozens or even hundreds of very similar species. With mass spectrometry, currently high-quality spectra of intact proteoforms can be obtained only, if the complexity of the mixture of individual proteoform-ions, entering the gas phase at the same time is low. Thus, prior to mass spectrometric analysis, an effective separation is required for getting fractions with a low number of individual proteoforms. This is especially true not only for recombinant therapeutic proteins, because of their huge heterogeneity, but also relevant for top-down proteomics. Purification of proteoforms is the bottleneck in analyzing intact proteoforms with mass spectrometry. This review is focusing on the current state of the art, especially of liquid chromatography for preparing proteoforms for mass spectrometric top-down analysis. The topic of therapeutic proteins has been chosen, because this group of proteins is most challenging regarding their proteoform analysis.","PeriodicalId":429683,"journal":{"name":"Proteoforms - Concept and Applications in Medical Sciences","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126340024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}