{"title":"Probability and Distributions","authors":"M. Deisenroth, A. Faisal, Cheng Soon Ong","doi":"10.1017/9781108679930.008","DOIUrl":"https://doi.org/10.1017/9781108679930.008","url":null,"abstract":"","PeriodicalId":426020,"journal":{"name":"Mathematics for Machine Learning","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116132382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Matrix Decompositions","authors":"Z. Dvořák","doi":"10.1017/9781108679930.006","DOIUrl":"https://doi.org/10.1017/9781108679930.006","url":null,"abstract":"Proof. Reorder the rows of A so that Gaussian elimination algorithm does not need to exchange rows—the reordering is described by the permutation matrix P . Run Gaussian elimination for PA, only allowing addition of a multiple of a row to some row with higher index; the resulting matrix is U . The matrix L is obtained by performing the inverse operations on an identity matrix in the reverse order.","PeriodicalId":426020,"journal":{"name":"Mathematics for Machine Learning","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134488606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Continuous Optimization","authors":"Kees Roos, De Uithof","doi":"10.1017/9781108679930.009","DOIUrl":"https://doi.org/10.1017/9781108679930.009","url":null,"abstract":"","PeriodicalId":426020,"journal":{"name":"Mathematics for Machine Learning","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115930595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Linear Algebra","authors":"Arak M. Haubold, Hans J. Mathai","doi":"10.1017/9781108679930.004","DOIUrl":"https://doi.org/10.1017/9781108679930.004","url":null,"abstract":"","PeriodicalId":426020,"journal":{"name":"Mathematics for Machine Learning","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124639656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}