Matrix Decompositions

Z. Dvořák
{"title":"Matrix Decompositions","authors":"Z. Dvořák","doi":"10.1017/9781108679930.006","DOIUrl":null,"url":null,"abstract":"Proof. Reorder the rows of A so that Gaussian elimination algorithm does not need to exchange rows—the reordering is described by the permutation matrix P . Run Gaussian elimination for PA, only allowing addition of a multiple of a row to some row with higher index; the resulting matrix is U . The matrix L is obtained by performing the inverse operations on an identity matrix in the reverse order.","PeriodicalId":426020,"journal":{"name":"Mathematics for Machine Learning","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics for Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108679930.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Proof. Reorder the rows of A so that Gaussian elimination algorithm does not need to exchange rows—the reordering is described by the permutation matrix P . Run Gaussian elimination for PA, only allowing addition of a multiple of a row to some row with higher index; the resulting matrix is U . The matrix L is obtained by performing the inverse operations on an identity matrix in the reverse order.
矩阵分解
证明。重新排序A的行,这样高斯消去算法就不需要交换行——重新排序用置换矩阵P来描述。对PA执行高斯消去,只允许将一行的倍数加到索引更高的行上;得到的矩阵是U。矩阵L是由对单位矩阵按相反的顺序进行逆运算得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信