Journal of Time Series Econometrics最新文献

筛选
英文 中文
Forecasting the Risk of Cryptocurrencies: Comparison and Combination of GARCH and Stochastic Volatility Models 预测加密货币的风险:GARCH 和随机波动率模型的比较与组合
IF 0.8
Journal of Time Series Econometrics Pub Date : 2024-07-22 DOI: 10.1515/jtse-2023-0039
Jan Prüser
{"title":"Forecasting the Risk of Cryptocurrencies: Comparison and Combination of GARCH and Stochastic Volatility Models","authors":"Jan Prüser","doi":"10.1515/jtse-2023-0039","DOIUrl":"https://doi.org/10.1515/jtse-2023-0039","url":null,"abstract":"The high returns of cryptocurrencies have attracted many investors in recent years. At the same time the evolution of cryptocurrencies is characterized by extreme volatility. For investors, it is therefore key to gauge the risks related to an investment in cryptocurrencies. We provide a comparison of several GARCH and stochastic volatility models for forecasting the risk of cryptocurrencies over the out-of-sample period from 28.09.2018 to 28.02.2023. It turns out that the widely used GARCH(1,1) does not provide accurate risk predictions. In contrast, adding <jats:italic>t</jats:italic>-distributed innovations or allowing for regime changes improves the accuracy in both model classes. Finally, we consider a Bayesian decision-guided approach with discount learning to combine the different models and provide robust evidence that combining the model predictions leads to accurate combined risk predictions.","PeriodicalId":42470,"journal":{"name":"Journal of Time Series Econometrics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recurrent Neural Network GO-GARCH Model for Portfolio Selection 用于投资组合选择的循环神经网络 GO-GARCH 模型
IF 0.6
Journal of Time Series Econometrics Pub Date : 2024-07-16 DOI: 10.1515/jtse-2023-0012
Martin Burda, Adrian K. Schroeder
{"title":"Recurrent Neural Network GO-GARCH Model for Portfolio Selection","authors":"Martin Burda, Adrian K. Schroeder","doi":"10.1515/jtse-2023-0012","DOIUrl":"https://doi.org/10.1515/jtse-2023-0012","url":null,"abstract":"\u0000 We develop a hybrid model of multivariate volatility that uses recurrent neural networks to capture the conditional variances of latent orthogonal factors in a GO-GARCH framework. Our approach seeks to balance model flexibility with ease of estimation and can be used to model conditional covariances of a large number of assets. The model performs favourably in comparison with relevant benchmark models in a minimum variance portfolio (MVP) scenario.","PeriodicalId":42470,"journal":{"name":"Journal of Time Series Econometrics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141644173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commodity Price and Indonesian Fiscal Policy: An SVAR Analysis with Non-Gaussian Errors 商品价格与印尼财政政策:非高斯误差的 SVAR 分析
IF 0.8
Journal of Time Series Econometrics Pub Date : 2024-07-08 DOI: 10.1515/jtse-2023-0037
Alfan Mansur
{"title":"Commodity Price and Indonesian Fiscal Policy: An SVAR Analysis with Non-Gaussian Errors","authors":"Alfan Mansur","doi":"10.1515/jtse-2023-0037","DOIUrl":"https://doi.org/10.1515/jtse-2023-0037","url":null,"abstract":"This study exploits the non-Gaussianity for identification of a Bayesian SVAR model on newly unexplored monthly Indonesian data from 2007M1–2022M12, where we disentangle the commodity-related revenue from the total government revenues. Our main contribution is in labeling the statistically identified structural shocks as economic shocks by conducting a formal assessment of a set of proposed sign constraints. We simultaneously label a commodity price and three fiscal policy shocks, i.e. fiscal income tax, investment-spending, and consumption-spending shocks. Having evaluated their impacts, among the fiscal policy shocks, we find income tax shock the most impactful on output. Moreover, during the Covid crisis 2020–2021, the launched fiscal economic stimulus package (PEN program) positively contributed to the output. The recession of the Covid crisis could have deepened had the fiscal policymaker not responded at all. Albeit so, we should not overlook the contribution of the rising commodity prices to the output recovery. We also evaluate the commodity boom period in 2007–2009, the tax amnesty program in 2016–2017 and 2022, and the infrastructure spending boost in 2015. Our results suggest that output and retail sales would have been lower without the commodity price shock’s contribution during the commodity boom. Then, we find that tax amnesty and infrastructure spending boost policies contribute to higher retail sales.","PeriodicalId":42470,"journal":{"name":"Journal of Time Series Econometrics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation 使用 ECCC-GARCH 表示法对向量乘法误差模型进行准最大似然估计
IF 0.8
Journal of Time Series Econometrics Pub Date : 2024-01-03 DOI: 10.1515/jtse-2022-0018
Yongdeng Xu
{"title":"Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation","authors":"Yongdeng Xu","doi":"10.1515/jtse-2022-0018","DOIUrl":"https://doi.org/10.1515/jtse-2022-0018","url":null,"abstract":"Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.","PeriodicalId":42470,"journal":{"name":"Journal of Time Series Econometrics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139119031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation 使用 ECCC-GARCH 表示法对向量乘法误差模型进行准最大似然估计
IF 0.8
Journal of Time Series Econometrics Pub Date : 2024-01-03 DOI: 10.1515/jtse-2022-0018
Yongdeng Xu
{"title":"Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation","authors":"Yongdeng Xu","doi":"10.1515/jtse-2022-0018","DOIUrl":"https://doi.org/10.1515/jtse-2022-0018","url":null,"abstract":"Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.","PeriodicalId":42470,"journal":{"name":"Journal of Time Series Econometrics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139120073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation 使用 ECCC-GARCH 表示法对向量乘法误差模型进行准最大似然估计
IF 0.8
Journal of Time Series Econometrics Pub Date : 2024-01-03 DOI: 10.1515/jtse-2022-0018
Yongdeng Xu
{"title":"Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation","authors":"Yongdeng Xu","doi":"10.1515/jtse-2022-0018","DOIUrl":"https://doi.org/10.1515/jtse-2022-0018","url":null,"abstract":"Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.","PeriodicalId":42470,"journal":{"name":"Journal of Time Series Econometrics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139124508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation 使用 ECCC-GARCH 表示法对向量乘法误差模型进行准最大似然估计
IF 0.8
Journal of Time Series Econometrics Pub Date : 2024-01-03 DOI: 10.1515/jtse-2022-0018
Yongdeng Xu
{"title":"Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation","authors":"Yongdeng Xu","doi":"10.1515/jtse-2022-0018","DOIUrl":"https://doi.org/10.1515/jtse-2022-0018","url":null,"abstract":"Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.","PeriodicalId":42470,"journal":{"name":"Journal of Time Series Econometrics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139124550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation 使用 ECCC-GARCH 表示法对向量乘法误差模型进行准最大似然估计
IF 0.8
Journal of Time Series Econometrics Pub Date : 2024-01-03 DOI: 10.1515/jtse-2022-0018
Yongdeng Xu
{"title":"Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation","authors":"Yongdeng Xu","doi":"10.1515/jtse-2022-0018","DOIUrl":"https://doi.org/10.1515/jtse-2022-0018","url":null,"abstract":"Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.","PeriodicalId":42470,"journal":{"name":"Journal of Time Series Econometrics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139112953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation 使用 ECCC-GARCH 表示法对向量乘法误差模型进行准最大似然估计
IF 0.8
Journal of Time Series Econometrics Pub Date : 2024-01-03 DOI: 10.1515/jtse-2022-0018
Yongdeng Xu
{"title":"Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation","authors":"Yongdeng Xu","doi":"10.1515/jtse-2022-0018","DOIUrl":"https://doi.org/10.1515/jtse-2022-0018","url":null,"abstract":"Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.","PeriodicalId":42470,"journal":{"name":"Journal of Time Series Econometrics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139113145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation 使用 ECCC-GARCH 表示法对向量乘法误差模型进行准最大似然估计
IF 0.8
Journal of Time Series Econometrics Pub Date : 2024-01-03 DOI: 10.1515/jtse-2022-0018
Yongdeng Xu
{"title":"Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation","authors":"Yongdeng Xu","doi":"10.1515/jtse-2022-0018","DOIUrl":"https://doi.org/10.1515/jtse-2022-0018","url":null,"abstract":"Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.","PeriodicalId":42470,"journal":{"name":"Journal of Time Series Econometrics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139113316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信