Materials Science in Additive Manufacturing最新文献

筛选
英文 中文
Additive manufacturing: A machine learning model of process-structure-property linkages for machining behavior of Ti-6Al-4V 增材制造:Ti-6Al-4V加工行为过程-结构-性能联系的机器学习模型
Materials Science in Additive Manufacturing Pub Date : 2022-03-30 DOI: 10.18063/msam.v1i1.6
Xi Gong, Dongrui Zeng, Willem Groeneveld-Meijer, G. Manogharan
{"title":"Additive manufacturing: A machine learning model of process-structure-property linkages for machining behavior of Ti-6Al-4V","authors":"Xi Gong, Dongrui Zeng, Willem Groeneveld-Meijer, G. Manogharan","doi":"10.18063/msam.v1i1.6","DOIUrl":"https://doi.org/10.18063/msam.v1i1.6","url":null,"abstract":"Prior studies in metal additive manufacturing (AM) of parts have shown that various AM methods and post-AM heat treatment result in distinctly different microstructure and machining behavior when compared with conventionally manufactured parts. There is a crucial knowledge gap in understanding this process-structure-property (PSP) linkage and its relationship to material behavior. In this study, the machinability of metallic Ti-6Al-4V AM parts was investigated to better understand this unique PSP linkage through a novel data science-based approach, specifically by developing and validating a new machine learning (ML) model for material characterization and material property, that is, machining behavior. Heterogeneous material structures of Ti-6Al-4V AM samples fabricated through laser powder bed fusion and electron beam powder bed fusion in two different build orientations and post-AM heat treatments were quantitatively characterized using scanning electron microscopy, electron backscattered diffraction, and residual stress measured through X-ray diffraction. The reduced dimensional representation of material characterization data through chord length distribution (CLD) functions, 2-point correlation functions, and principal component analysis was found to be accurate in quantifying the complexities of Ti-6Al-4V AM structures. Specific cutting energy was the response variable for the Taguchi-based experimentation using force dynamometer. A low-dimensional S-P linkage model was established to correlate material structures of metallic AM and machining properties through this novel ML model. It was found that the prediction accuracy of this new PSP linkage is extremely high (>99%, statistically significant at 95% confidence interval). Findings from this study can be seamlessly integrated with P-S models to identify AM processing conditions that will lead to desired material behaviors, such as machining behavior (this study), fatigue behavior, and corrosion resistance.","PeriodicalId":422581,"journal":{"name":"Materials Science in Additive Manufacturing","volume":"178 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124424107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
Design, simulation, and experiments for direct thixotropic metal 3D printing 直接触变金属3D打印的设计,模拟和实验
Materials Science in Additive Manufacturing Pub Date : 2022-03-28 DOI: 10.18063/msam.v1i1.5
Yifan Fei, Jie Xu, D. Yao, R. Chiou, Jack G. Zhou
{"title":"Design, simulation, and experiments for direct thixotropic metal 3D printing","authors":"Yifan Fei, Jie Xu, D. Yao, R. Chiou, Jack G. Zhou","doi":"10.18063/msam.v1i1.5","DOIUrl":"https://doi.org/10.18063/msam.v1i1.5","url":null,"abstract":"Compared with current powder-based 3D metal printing, thixotropic metal 3D printing has great potentials and advantages in equipment cost, product quality, and process efficiency. In this paper, detailed problem statement, technique challenge, and development method regarding thixotropic metal 3D printing are discussed. A shear mixing and extruding prototype machine for thixotropic alloy fabrication was designed. We developed a direct thixotropic metal 3D printing machine and conducted a modeling and simulation process for the system. The printability of this direct metal 3D printing machine was studied. At the end, conclusions and future directions are also presented.","PeriodicalId":422581,"journal":{"name":"Materials Science in Additive Manufacturing","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130955366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Processing and characterization of crack-free 7075 aluminum alloys with elemental Zr modification by laser powder bed fusion 激光粉末床熔合Zr单质改性7075铝合金的加工与表征
Materials Science in Additive Manufacturing Pub Date : 2022-03-25 DOI: 10.18063/msam.v1i1.4
Wenhui Yu, Z. Xiao, Xuhui Zhang, Ye Sun, Peng Xue, Shuai Tan, Yongling Wu, Hongyu Zheng
{"title":"Processing and characterization of crack-free 7075 aluminum alloys with elemental Zr modification by laser powder bed fusion","authors":"Wenhui Yu, Z. Xiao, Xuhui Zhang, Ye Sun, Peng Xue, Shuai Tan, Yongling Wu, Hongyu Zheng","doi":"10.18063/msam.v1i1.4","DOIUrl":"https://doi.org/10.18063/msam.v1i1.4","url":null,"abstract":"High-performance engineering alloys, such as 7000 series aluminum alloys, suffer poor printability in laser powder bed fusion (LPBF) additive manufacturing. An enormous challenge lies in the suppression of solidification cracks caused by solidification shrinkage and thermal stresses. Porosity formation, as one of the main concerns for LPBF application, should also be avoided at the same time. In this study, aluminum alloy (AA) 7075 with and without Zr modification was additively manufactured by LPBF. Processing parameters of laser power and scanning speed, resulting in various volumetric energy density (VED), were experimentally determined to produce crack-free components with tailored microstructure. Optical microscopy was used to reveal how the crack density and porosity vary with VED. Scanning electron microscopy and transmission electron microscopy uncovered the detailed microstructure in the molten pool and the evolution of the elemental Zr addition. The results indicate that 1 w.t.% addition of elemental Zr in AA7075 led to lower crack density compared with 0.3 w.t.% addition. In 1 w.t.% Zr-modified AA7075, crack-free components were obtained under high VED. Fine equiaxed grains, instead of large columnar grains, were formed at the bottom of the molten pool boundary due to the existence of Al3Zr compound, which favored the nucleation of aluminum grains and elimination of cracks. The phenomenon of silicon segregation near cracks remained in Zr modified alloys, although its effects on cracking were suppressed. Spherical pores in the Zr-modified AA7075 increased due to the deterioration of fluidity by unmelted particles, which distracted the Marangoni flow as well. Sufficient laser energy input can increase the viscosity and ease the pores escaping. By optimizing parameters, crack-free AA7075 parts with low porosity can be manufactured through LPBF with Zr addition.","PeriodicalId":422581,"journal":{"name":"Materials Science in Additive Manufacturing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130062065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
A cylindrical path planning approach for additive manufacturing of revolved components 旋转零件增材制造的圆柱路径规划方法
Materials Science in Additive Manufacturing Pub Date : 2022-03-24 DOI: 10.18063/msam.v1i1.3
A. G. Dharmawan, G. Soh
{"title":"A cylindrical path planning approach for additive manufacturing of revolved components","authors":"A. G. Dharmawan, G. Soh","doi":"10.18063/msam.v1i1.3","DOIUrl":"https://doi.org/10.18063/msam.v1i1.3","url":null,"abstract":"Depositing on inclined cylindrical surfaces has recently gained interest due to its potential for directly employing feedstock that forms part of the printed structure. In this paper, we present our approach to perform cylindrical path planning through converting a planar slicing data structure into a universal 3D polar data structure. This has the advantage of using off-the-shelf slicing software and adapting it for cylindrical path planning. Our approach is capable of generating cylindrical print paths of various patterns such as linear raster, circular raster, hybrid contour, and zigzag path. We demonstrate the capability of the approach to planning cylindrical print paths for two different revolved components employing these three different printing patterns. Actual printing experiments and tensile tests of the cylindrical part using wire-arc additive manufacturing were conducted and reported. It was found that they yield an average tensile strength that matches the strength of the 4340 feedstock.","PeriodicalId":422581,"journal":{"name":"Materials Science in Additive Manufacturing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127909649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Plasma spheroidization of gas-atomized 304L stainless steel powder for laser powder bed fusion process 304L不锈钢粉末气雾化等离子体球化激光熔床工艺研究
Materials Science in Additive Manufacturing Pub Date : 2022-03-18 DOI: 10.18063/msam.v1i1.1
M. Sehhat, Austin Sutton, C. Hung, B. Brown, R. O’Malley, Jong-kook Park, M. Leu
{"title":"Plasma spheroidization of gas-atomized 304L stainless steel powder for laser powder bed fusion process","authors":"M. Sehhat, Austin Sutton, C. Hung, B. Brown, R. O’Malley, Jong-kook Park, M. Leu","doi":"10.18063/msam.v1i1.1","DOIUrl":"https://doi.org/10.18063/msam.v1i1.1","url":null,"abstract":"Particles of AISI 304L stainless steel powder were spheroidized by the induction plasma spheroidization process (TekSphero-15 spheroidization system) to assess the effects of the spheroidization process on powder and part properties. The morphology of both as-received and spheroidized powders was characterized by measuring particle size and shape distribution. The chemistry of powders was studied using inductively coupled plasma optical emission spectroscopy for evaluation of composing elements, and the powder’s microstructure was assessed by X-ray diffraction for phase identification and by electron backscattered diffraction patterns for crystallography characterization. The Revolution Powder Analyzer was used to quantify powder flowability. The mechanical properties of parts fabricated with as-received and spheroidized powders using laser powder bed fusion process were measured and compared. Our experimental results showed that the fabricated parts with plasma spheroidized powder have lower tensile strength but higher ductility. Considerable changes in powder chemistry and microstructure were observed due to the change in solidification mode after the spheroidization process. The spheroidized powder solidified in the austenite-to-ferrite solidification mode due to the loss of carbon, nitrogen, and oxygen. In contrast, the as-received powder solidified in the ferrite-to-austenite solidification mode. This change in solidification mode impacted the components made with spheroidized powder to have lower tensile strength but higher ductility.","PeriodicalId":422581,"journal":{"name":"Materials Science in Additive Manufacturing","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114329456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Characterization of triply periodic minimal surface structures obtained using toolpath-based construction design 利用基于刀具轨迹的构造设计获得三周期最小表面结构的表征
Materials Science in Additive Manufacturing Pub Date : 2020-09-21 DOI: 10.18063/msam.v1i3.17
Shujie Tan, Xi Zhang, Ziyu Wang, L. Ding, Wenliang Chen, Yicha Zhang
{"title":"Characterization of triply periodic minimal surface structures obtained using toolpath-based construction design","authors":"Shujie Tan, Xi Zhang, Ziyu Wang, L. Ding, Wenliang Chen, Yicha Zhang","doi":"10.18063/msam.v1i3.17","DOIUrl":"https://doi.org/10.18063/msam.v1i3.17","url":null,"abstract":"Triply periodic minimal surface (TPMS) cellular structures of Ti6Al4V with theoretically calculated relative densities ranging from 4% to 22.6% were designed using a toolpath-based construction method and fabricated by laser powder bed fusion, and their macrostructure, microstructure, and compression performance were investigated. The results indicated that the macrostructure was the same as that of TPMS structures designed using the traditional method. In contrast, the microstructures of the as-built samples and the samples after stress-relief annealing were slightly different from those of the traditional ones. Moreover, compression test results of the Schwarz-P structures showed that the compressive modulus was positively related to the calculated relative density, and a Gibson-Ashby model was established to quantitatively describe the relationship between the compressive modulus and theoretical relative density. The findings of this work show that the mechanical performance of a TPMS structure obtained using a toolpath-based construction design can be accurately predicted using geometric parameters or printing toolpaths. This will be helpful during the design stage.","PeriodicalId":422581,"journal":{"name":"Materials Science in Additive Manufacturing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125240752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信