Senescence [Working Title]最新文献

筛选
英文 中文
Anti-Senescence Therapy Anti-Senescence疗法
Senescence [Working Title] Pub Date : 2022-02-02 DOI: 10.5772/intechopen.101585
Raghad Alshadidi
{"title":"Anti-Senescence Therapy","authors":"Raghad Alshadidi","doi":"10.5772/intechopen.101585","DOIUrl":"https://doi.org/10.5772/intechopen.101585","url":null,"abstract":"The development of therapeutic strategies aimed at the aging process of cells has attracted increasing attention in recent decades due to the involvement of this process in the development of many chronic and age-related diseases. Interestingly, preclinical studies have shown the success of a number of anti-aging approaches in the treatment of a range of chronic diseases. These approaches are directed against aging processes such as oxidative stress, telomerase shortening, inflammation, and deficient autophagy. Many strategies has been shown to be effective in delaying aging, including antiaging strategies based on establishing healthy lifestyle habits and pharmacological interventions aimed at disrupting senescent cells and senescent-associated secretory phenotype. Caloric restriction and intermittent fasting were reported to activate autophagy and reduce inflammation. In turn, immune-based strategies, senolytic agents, and senomorphics mediate their effects either by eliminating senescent cells through inducing apoptosis or by disrupting pathways by which senescent cells mediate their detrimental effects. In addition, given the association of the decline in the regenerative potential of stem cells with aging, many experimental and clinical studies indicate the effectiveness of stem cell transplantation in preventing or slowing the progress of age-related diseases by enhancing the repairing mechanisms and the secretion of many growth factors and cytokines.","PeriodicalId":419821,"journal":{"name":"Senescence [Working Title]","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125344835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellular Senescence in Bone 骨细胞衰老
Senescence [Working Title] Pub Date : 2021-12-28 DOI: 10.5772/intechopen.101803
Dan Wang, Haitao Wang
{"title":"Cellular Senescence in Bone","authors":"Dan Wang, Haitao Wang","doi":"10.5772/intechopen.101803","DOIUrl":"https://doi.org/10.5772/intechopen.101803","url":null,"abstract":"Senescence is an irreversible cell-cycle arrest process induced by environmental, genetic, and epigenetic factors. An accumulation of senescent cells in bone results in age-related disorders, and one of the common problems is osteoporosis. Deciphering the basic mechanisms contributing to the chronic ailments of aging may uncover new avenues for targeted treatment. This review focuses on the mechanisms and the most relevant research advancements in skeletal cellular senescence. To identify new options for the treatment or prevention of age-related chronic diseases, researchers have targeted hallmarks of aging, including telomere attrition, genomic instability, cellular senescence, and epigenetic alterations. First, this chapter provides an overview of the fundamentals of bone tissue, the causes of skeletal involution, and the role of cellular senescence in bone and bone diseases such as osteoporosis. Next, this review will discuss the utilization of pharmacological interventions in aging tissues and, more specifically, highlight the role of senescent cells to identify the most effective and safe strategies.","PeriodicalId":419821,"journal":{"name":"Senescence [Working Title]","volume":"214 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123023285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of RNA Species That Bind to the hnRNP A1 in Normal and Senescent Human Fibroblasts 正常和衰老人类成纤维细胞中与hnRNP A1结合的RNA种类的鉴定
Senescence [Working Title] Pub Date : 2021-12-20 DOI: 10.5772/intechopen.101525
Heriberto Moran, Shanaz A. Ghandhi, N. Shimada, K. Hubbard
{"title":"Identification of RNA Species That Bind to the hnRNP A1 in Normal and Senescent Human Fibroblasts","authors":"Heriberto Moran, Shanaz A. Ghandhi, N. Shimada, K. Hubbard","doi":"10.5772/intechopen.101525","DOIUrl":"https://doi.org/10.5772/intechopen.101525","url":null,"abstract":"hnRNP A1 is a member of the hnRNPs (heterogeneous nuclear ribonucleoproteins) family of proteins that play a central role in regulating genes responsible for cell proliferation, DNA repair, apoptosis, and telomere biogenesis. Previous studies have shown that hnRNPA1 had reduced protein levels and increased cytoplasmic accumulation in senescent human diploid fibroblasts. The consequence of reduced protein expression and altered cellular localization may account for the alterations in gene expression observed during senescence. There is limited information for gene targets of hnRNP A1 as well as its in vivo function. In these studies, we performed RNA co-immunoprecipitation experiments using hnRNP A1 as the target protein to identify potential mRNA species in ribonucleoprotein (RNP) complexes. Using this approach, we identified the human double minute 2 (HDM2) mRNA as a binding target for hnRNP A1 in young and senescent human diploid fibroblasts cells. It was also observed that alterations of hnRNP A1 expression modulate HDM2 mRNA levels in young IMR-90 cells. We also demonstrated that the levels of HDM2 mRNA increased with the downregulation of hnRNP A1 and decrease with the overexpression of hnRNP A1. Although we did not observe a significant decrease in HDM2 protein level, a concomitant increase in p53 protein level was detected with the overexpression of hnRNP A1. Our studies also show that hnRNP A1 directly interacts with HDM2 mRNA at a region corresponding to its 3′ UTR (untranslated region of a gene). The results from this study demonstrate that hnRNP A1 has a novel role in participating in the regulation of HDM2 gene expression.","PeriodicalId":419821,"journal":{"name":"Senescence [Working Title]","volume":"262 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115963994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic and Epigenetic Influences on Cutaneous Cellular Senescence 遗传和表观遗传对皮肤细胞衰老的影响
Senescence [Working Title] Pub Date : 2021-11-11 DOI: 10.5772/intechopen.101152
Tapash Jay Sarkar, Maiko Hermsmeier, Jessica L. Ross, G. Scott Herron
{"title":"Genetic and Epigenetic Influences on Cutaneous Cellular Senescence","authors":"Tapash Jay Sarkar, Maiko Hermsmeier, Jessica L. Ross, G. Scott Herron","doi":"10.5772/intechopen.101152","DOIUrl":"https://doi.org/10.5772/intechopen.101152","url":null,"abstract":"Skin is the largest human organ system, and its protective function is critical to survival. The epithelial, dermal, and subcutaneous compartments are heterogeneous mixtures of cell types, yet they all display age-related skin dysfunction through the accumulation of an altered phenotypic cellular state called senescence. Cellular senescence is triggered by complex and dynamic genetic and epigenetic processes. A senescence steady state is achieved in different cell types under various and overlapping conditions of chronological age, toxic injury, oxidative stress, replicative exhaustion, DNA damage, metabolic dysfunction, and chromosomal structural changes. These inputs lead to outputs of cell-cycle withdrawal and the appearance of a senescence-associated secretory phenotype, both of which accumulate as tissue pathology observed clinically in aged skin. This review details the influence of genetic and epigenetic factors that converge on normal cutaneous cellular processes to create the senescent state, thereby dictating the response of the skin to the forces of both intrinsic and extrinsic aging. From this work, it is clear that no single biomarker or process leads to senescence, but that it is a convergence of factors resulting in an overt aging phenotype.","PeriodicalId":419821,"journal":{"name":"Senescence [Working Title]","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134251806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信