Ardianne Luthfika Fairuz, R. Ramadhani, Nia Annisa Ferani Tanjung
{"title":"Analisis Sentimen Masyarakat Terhadap COVID-19 Pada Media Sosial Twitter","authors":"Ardianne Luthfika Fairuz, R. Ramadhani, Nia Annisa Ferani Tanjung","doi":"10.20895/dinda.v1i1.180","DOIUrl":"https://doi.org/10.20895/dinda.v1i1.180","url":null,"abstract":"Akhir tahun 2019 lalu dunia digemparkan oleh munculnya suatu penyakit yang disebabkan oleh virus SARS-CoV-2 yang merupakan jenis virus terbaru dari coronavirus. Penyakit ini dikenal dengan nama COVID-19. Penyebaran penyakit ini terbilang cukup luas dan cepat. Dalam waktu singkat penyakit ini mulai menyebar ke segala penjuru dunia tak terkecuali Indonesia. Dengan tingkat penyebaran yang begitu tinggi dan belum ditemukannya vaksin untuk COVID-19, menyebabkan kekacauan di tengah masyarakat. Hal ini mempengaruhi banyak sektor kehidupan masyarakat. Tak sedikit masyarakat yang aktif bersosial media dan menuliskan pendapat, opini serta pemikirannya di platform media sosial seperti Twitter. Terjadinya pandemi ini mendorong masyarakat untuk menuliskan opini, pemikiran serta pendapatnya terhadap COVID-19 pada media sosial Twitter. Dibutuhkan suatu model sentiment analysis untuk mengklasifikasi tweet masyarakat di Twitter menjadi positif dan negatif. Sentiment analysis merupakan bagian dari Natural Language Processing yang membuat sebuah sistem guna mengenali serta mengekstraksi opini dalam bentuk teks. Pada penelitian ini digunakan algoritma Naive Bayes dan K-Nearest Neighbor untuk digunakan dalam membangun model sentiment analysis terhadap tweet pengguna Twitter terhadap COVID-19. Didapatkan akurasi sebesar 85% untuk algoritma Naïve Bayes dan 82% untuk algoritma K-Nearest Neighbor pada nilai k=6, 8, dan 14.","PeriodicalId":419119,"journal":{"name":"Journal of Dinda : Data Science, Information Technology, and Data Analytics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125047131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perancangan Aplikasi Kamus Online Informatika-Indonesia Beserta Fungsinya Berbasis Web Menggunakan Metode Sequential Search","authors":"Alfira Mahda Ramadini, A. Junaidi, F. Wibowo","doi":"10.20895/dinda.v1i1.184","DOIUrl":"https://doi.org/10.20895/dinda.v1i1.184","url":null,"abstract":"In this era of digital optimization, Information and Communication Technology is growing very rapidly. This is in line with the demands and human needs that have been actualized in various fields, such as knowledge and education. To support a learning process based on SCIENCE (Science and Technology) required several supporting aspects such as online dictionary that includes vocabulary and functions of words / terms in the FIELD of IT. One of the supporting aspects is an alternative tool in the form of media that facilitates every community in learning the terms in the field of informatics. According to pie chart data from questionnaires that the authors made, as much as 50 percent of the knowledge of the term informatics of the general public (lay people) can be said to be still very low. In contrast to the academic community such as IT Lecturers and IT Students who do master the field, although it does not close the possibility there are some IT Students who do not fully understand in their fields. The expected result of the authors in this study is the increasing knowledge, especially the general public (lay people) in studying science in the field of IT especially language and informatics terms through online disses. This Online Dictionary application will be designed website-based using sequential search method where sequential search (also called linear search) is the most simple search model performed on a data set. The Online Dictionary application will run by searching for vocabulary or terms in informatics according to the keywords they are looking for, making it easier for users to learn the language of informatics. \u0000Keywords: Website, Vocabulary, Dictionary Online, Informatics, IT, Sequential Search, Science and Technology","PeriodicalId":419119,"journal":{"name":"Journal of Dinda : Data Science, Information Technology, and Data Analytics","volume":"242 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134304570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Adhinata, Diovianto Putra Rakhmadani, Alon Jala Tirta Segara
{"title":"Pengenalan Jenis Kelamin Manusia Berbasis Suara Menggunakan MFCC dan GMM","authors":"F. Adhinata, Diovianto Putra Rakhmadani, Alon Jala Tirta Segara","doi":"10.20895/dinda.v1i1.198","DOIUrl":"https://doi.org/10.20895/dinda.v1i1.198","url":null,"abstract":"Biometric information that exists in humans is unique from one human to another. One of the biometric data that is easily obtained is the human voice. The human voice is identic data that can differentiate between individuals. When we hear human voices directly, it is easy for our ears to tell the person who is speaking is male or female. But sometimes male voices can resemble girls and vice versa. Therefore, we propose a human voice detection system through Artificial Intelligence (AI) in machine learning. In this study, we used the Mel Frequency Cepstrum Coefficients (MFCC) method to extract human voice features and Gaussian Mixture Models (GMM) for the classification of female or male voice data. The experiment results showed that the system built was able to detect human gender through biometric voice data with an accuracy of 81.18%.","PeriodicalId":419119,"journal":{"name":"Journal of Dinda : Data Science, Information Technology, and Data Analytics","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132773942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}