Biogas Research Center (BRC) Report最新文献

筛选
英文 中文
Towards a more circular biobased economy and nutrient use on Gotland: finding suitable locations for biogas plants 哥特兰岛朝着更循环的生物经济和养分利用方向发展:为沼气厂寻找合适的地点
Biogas Research Center (BRC) Report Pub Date : 2023-07-31 DOI: 10.3384/report.diva-194234
Madeleine Larsson, K. Tonderski, G. Metson, Nils-Hassan Quttineh
{"title":"Towards a more circular biobased economy and nutrient use on Gotland: finding suitable locations for biogas plants","authors":"Madeleine Larsson, K. Tonderski, G. Metson, Nils-Hassan Quttineh","doi":"10.3384/report.diva-194234","DOIUrl":"https://doi.org/10.3384/report.diva-194234","url":null,"abstract":"In this study we have investigated the role of biogas solutions to support increased resource efficiency on the island Gotland, including recovery and redistribution of nitrogen (N) and phosphorus (P) within the agricultural sector. First, we analyzed the potential for expanding energy and nutrient recovery from organic residues using biogas solutions. Our findings suggest that the biogas production could expand to 165 GWh, from the current 36 GWh (2020), with manure accounting for a potential 110 GWh biogas annually if all were digested. Comparing the nutrients contained in organic feedstock with the crop nutrient demand on Gotland showed that for N the demand is 2.4 times higher than the supply. In contrast, the calculations showed a 137 tonnes P surplus, with distinct excess areas in the center and southern part of the island. We then compared scenarios with different numbers (3 - 15) of biogas plants with respect to efficient nutrient redistribution and transport costs. Spatial constraints for new plants, e.g. need for roads with a certain capacity and permit issues, were accounted for by adding local information to a national data set. We identified 104 potential locations (1 km$^2$ grid cells) and used an optimization model to identify the most suitable locations for minimized transport costs. Optimal (meeting the crop demand with no excess) redistribution of all nutrients contained in the feedstock, as raw digestate from biogas plants, would result in an export of 127 tonnes of P from the island. The model results indicated that if all potential feedstock would be digested in three additional biogas plants and nutrients redistributed for optimal reuse, the total transport cost would be 2.6 million SEK annually, excluding the costs for nutrient export from the island (3.7 million SEK). If instead 10 or 15 smaller plants would be built, the transport cost would drop to 1.8 million SEK, with the same amount of P being exported. Comparing the scenarios with different number of biogas plants (3 - 15), showed that some locations are more suitable than others in terms of distance to feedstock and to fields with fertilizer demands. Finally, a preliminary analysis of the amount of crop residues indicated that this type of feedstock could add a substantial amount of biogas production, but more extensive analyses are needed to assess the feasibility to realize part of that potential.","PeriodicalId":415782,"journal":{"name":"Biogas Research Center (BRC) Report","volume":"83 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132479227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The current Nordic biogas and biofertilizer potential: An inventory of established feedstock and current technology 目前北欧沼气和生物肥料的潜力:已建立的原料和当前技术的清单
Biogas Research Center (BRC) Report Pub Date : 2023-05-11 DOI: 10.3384/9789180752558
Axel Lindfors, Roozbeh Feiz
{"title":"The current Nordic biogas and biofertilizer potential: An inventory of established feedstock and current technology","authors":"Axel Lindfors, Roozbeh Feiz","doi":"10.3384/9789180752558","DOIUrl":"https://doi.org/10.3384/9789180752558","url":null,"abstract":"Biogas solutions in the Nordics is undergoing rapid developments and the demand for biogas is ever increasing because of the Russian war on Ukraine and the transition to fossil free industry and transportation. Furthermore, with the introduction of several multi-national companies into the biogas sector in the Nordics and with more and more biomethane being traded across national borders, it becomes increasingly important to view biogas solutions in the Nordics as a whole and to go beyond the confines of each individual nation. Since the transition and the current energy crisis require a quick response, understanding what could be done with current technologies and established substrates is important to guide decision-making in the short-term. This study aims to do just that by presenting the current biogas potential for the Nordics, including Denmark, Finland, Iceland, Norway, and Sweden. The potential was estimated for eight categories: food waste, manure, food industry waste, sludge from wastewater treatment, landscaping waste, straw, agricultural residues, and crops with negligible indirect land use effects (such as ley crops and intermediary crops). Two categories were excluded due to a lack of appropriate estimation procedures and time to develop such procedures, and these were marine substrates and forest industry waste. Furthermore, several categories are somewhat incomplete due to lack of data on the availability of substrates and their biogas characteristics. These include, for example, crops grown on Ecological focus areas, excess ley silage, damaged crops, and certain types of food industries. The specifics of each category is further detailed in Section 2 of the report. In the report, the biogas potential includes the biomethane potential, the nutrient potential, and the carbon dioxide production potential, capturing all outputs of a biogas plant. The results of the potential study show that the current biomethane potential for the Nordics is about 39 TWh (140 PJ) per year when considering the included biomass categories in the short-term perspective. In relation to current production, realizing this potential would mean a roughly fourfold increase in yearly production, meaning that a significant unexploited potential remains. On the nutrient side, the biogas system in the Nordics would, given the realization of the estimated potential, be of roughly the same size as current mineral fertilizer use (about 75 percent for nitrogen and 160 percent for phosphorous). While this represents the management of a significant portion of nutrients used in agriculture, the potential to replace or reduce mineral fertilizer use through biogas expansion remains unexplored in this study since a significant portion of nutrients come from biomass that is already used as fertilizer (e.g., manure). Finally, on the carbon dioxide side, about 4.2 million tonnes of carbon dioxide would be produced, which could be either captured and stored or captured and ut","PeriodicalId":415782,"journal":{"name":"Biogas Research Center (BRC) Report","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123847308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信