{"title":"Gender Prediction Based on Vietnamese Names with Machine Learning Techniques","authors":"H. To, Kiet Van Nguyen, N. Nguyen, A. Nguyen","doi":"10.1145/3443279.3443309","DOIUrl":"https://doi.org/10.1145/3443279.3443309","url":null,"abstract":"As biological gender is one of the aspects of presenting individual human, much work has been done on gender classification based on people names. The proposals for English and Chinese languages are tremendous; still, there have been few works done for Vietnamese so far. We propose a new dataset for gender prediction based on Vietnamese names. This dataset comprises over 26,000 full names annotated with genders. This dataset is available on our website for research purposes. In addition, this paper describes six machine learning algorithms (Support Vector Machine, Multinomial Naive Bayes, Bernoulli Naive Bayes, Decision Tree, Random Forrest and Logistic Regression) and a deep learning model (LSTM) with fastText word embedding for gender prediction on Vietnamese names. We create a dataset and investigate the impact of each name component on detecting gender. As a result, the best F1-score that we have achieved is up to 96% on LSTM model and we generate a web API based on our trained model.","PeriodicalId":414366,"journal":{"name":"Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124720846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Character-Level Transformer-Based Neural Machine Translation","authors":"Nikolay Banar, Walter Daelemans, M. Kestemont","doi":"10.1145/3443279.3443310","DOIUrl":"https://doi.org/10.1145/3443279.3443310","url":null,"abstract":"Neural machine translation (NMT) is nowadays commonly applied at the subword level, using byte-pair encoding. A promising alternative approach focuses on character-level translation, which simplifies processing pipelines in NMT considerably. This approach, however, must consider relatively longer sequences, rendering the training process prohibitively expensive. In this paper, we discuss a Transformer-based approach, that we compare, both in speed and in quality to the Transformer at subword and character levels, as well as previously developed character-level models. We evaluate our models on 4 language pairs from WMT'15: DE-EN, CS-EN, FI-EN and RU-EN. The proposed architecture can be trained on a single GPU and is 34% faster than the character-level Transformer; still, the obtained results are at least on par with it. In addition, our proposed model outperforms the subword-level model in FI-EN and shows close results in CS-EN. To stimulate further research in this area and close the gap with subword-level NMT, we make all our code and models publicly available.","PeriodicalId":414366,"journal":{"name":"Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131280797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Understanding the Prediction Mechanism of Sentiments by XAI Visualization","authors":"Chaehan So","doi":"10.1145/3443279.3443284","DOIUrl":"https://doi.org/10.1145/3443279.3443284","url":null,"abstract":"People often rely on online reviews to make purchase decisions. The present work aimed to gain an understanding of a machine learning model's prediction mechanism by visualizing the effect of sentiments extracted from online hotel reviews with explainable AI (XAI) methodology. Study 1 used the extracted sentiments as features to predict the review ratings by five machine learning algorithms (knn, CART decision trees, support vector machines, random forests, gradient boosting machines) and identified random forests as best algorithm. Study 2 analyzed the random forests model by feature importance and revealed the sentiments joy, disgust, positive and negative as the most predictive features. Furthermore, the visualization of additive variable attributions and their prediction distribution showed correct prediction in direction and effect size for the 5-star rating but partially wrong direction and insufficient effect size for the 1-star rating. These prediction details were corroborated by a what-if analysis for the four top features. In conclusion, the prediction mechanism of a machine learning model can be uncovered by visualization of particular observations. Comparing instances of contrasting ground truth values can draw a differential picture of the prediction mechanism and inform decisions for model improvement.","PeriodicalId":414366,"journal":{"name":"Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128342093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}