International Ocean Discovery Program Preliminary Report最新文献

筛选
英文 中文
Expedition 381 Preliminary Report: Corinth Active Rift Development 381探险队初步报告:科林斯活跃裂谷发展
International Ocean Discovery Program Preliminary Report Pub Date : 2019-02-04 DOI: 10.14379/IODP.PR.381.2019
D. Shillington, L. McNeill, G. Carter
{"title":"Expedition 381 Preliminary Report: Corinth Active Rift Development","authors":"D. Shillington, L. McNeill, G. Carter","doi":"10.14379/IODP.PR.381.2019","DOIUrl":"https://doi.org/10.14379/IODP.PR.381.2019","url":null,"abstract":"The primary objective of International Ocean Discovery Program Expedition 381 was to retrieve a record of early continental rifting and basin evolution from the Corinth rift, central Greece. Continental rifting is fundamental for the formation of ocean basins, and active rift zones are dynamic regions of high geohazard potential. However, the detailed spatial and temporal evolution of a complete rift system needed to understand rift development from the fault to plate scale is poorly resolved. In the active Corinth rift, deformation rates are high, the recent synrift succession is preserved and complete offshore, earlier rift phases are preserved onshore, and a dense seismic database provides high-resolution imaging of the fault network and of seismic stratigraphy around the basin. As the basin has subsided, its depositional environment has been affected by fluctuating global sea level and its absolute position relative to sea level, and the basin sediments record this changing environment through time. In Corinth, we can therefore achieve an unprecedented precision of timing and spatial complexity of rift-fault system development, rift-controlled drainage system evolution, and basin fill in the first few million years of rift history. The following are the expedition themes: \u0000 \u0000 \u0000 \u0000High-resolution fault slip and rift evolution history, \u0000 \u0000Surface processes in active rifts, \u0000 \u0000High-resolution late Quaternary Eastern Mediterranean paleoclimate and paleoenvironment of a developing rift basin, and \u0000 \u0000Geohazard assessment in an active rift. \u0000 \u0000 \u0000 \u0000These objectives were and will be accomplished as a result of successful drilling, coring, and logging at three sites in the Gulf of Corinth, which collectively yielded 1645 m of recovered core over a 1905 m cored interval. Cores recovered at these sites together provide (1) a longer rift history (Sites M0078 and M0080), (2) a high-resolution record of the most recent phase of rifting (Site M0079), and (3) the spatial variation of rift evolution (comparison of sites in the central and eastern rift). The sediments contain a rich and complex record of changing sedimentation, sediment and pore water geochemistry, and environmental conditions from micropaleontological assemblages. The preliminary chronology developed by shipboard analyses will be refined and improved during postexpedition research, providing a high-resolution chronostratigraphy down to the orbital timescale for a range of tectonic, sedimentological, and paleoenvironmental studies. This chronology will provide absolute timing of key rift events, rates of fault movement, rift extension and subsidence, and the spatial variations of these parameters. The core data will also allow us to investigate the relative roles of and feedbacks between tectonics, climate, and eustasy in sediment flux and basin evolution. Finally, the Corinth rift boreholes will provide the first long Quaternary record of Mediterranean-type climate in the region. The potential ","PeriodicalId":406372,"journal":{"name":"International Ocean Discovery Program Preliminary Report","volume":"59 17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131376540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Expedition 376 Preliminary Report: Brothers Arc Flux 探险队376号初步报告:兄弟电弧通量
International Ocean Discovery Program Preliminary Report Pub Date : 2019-01-16 DOI: 10.14379/IODP.PR.376.2018
C. D. de Ronde, S. Humphris, T. Höfig
{"title":"Expedition 376 Preliminary Report: Brothers Arc Flux","authors":"C. D. de Ronde, S. Humphris, T. Höfig","doi":"10.14379/IODP.PR.376.2018","DOIUrl":"https://doi.org/10.14379/IODP.PR.376.2018","url":null,"abstract":"Volcanic arcs are the surface expression of magmatic systems that result from the subduction of mostly oceanic lithosphere at convergent plate boundaries. Arcs with a submarine component include intraoceanic arcs and island arcs that span almost 22,000 km on Earth's surface, the vast majority of which are located in the Pacific region. Hydrothermal systems hosted by submarine arc volcanoes commonly contain a large component of magmatic fluid. This magmatic-hydrothermal signature, coupled with the shallow water depths of arc volcanoes and their high volatile contents, strongly influences the chemistry of the fluids and resulting mineralization and likely has important consequences for the biota associated with these systems. The high metal contents and very acidic fluids in these hydrothermal systems are thought to be important analogs to numerous porphyry copper and epithermal gold deposits mined today on land ...","PeriodicalId":406372,"journal":{"name":"International Ocean Discovery Program Preliminary Report","volume":"143 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121805446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Expedition 368X Preliminary Report: South China Sea Rifted Margin 368X考察队初步报告:南海裂谷边缘
International Ocean Discovery Program Preliminary Report Pub Date : 2018-08-22 DOI: 10.14379/IODP.PR.368X.2019
L. Childress
{"title":"Expedition 368X Preliminary Report: South China Sea Rifted Margin","authors":"L. Childress","doi":"10.14379/IODP.PR.368X.2019","DOIUrl":"https://doi.org/10.14379/IODP.PR.368X.2019","url":null,"abstract":"International Ocean Discovery Program (IODP) Expedition 368X is the third of three cruises that form the South China Sea Rifted Margin program. Expeditions 367, 368, and 368X share the common key objectives of testing scientific hypotheses of breakup of the northern South China Sea (SCS) margin and comparing its rifting style and history to other nonvolcanic or magma-poor rifted margins. Four primary sites were selected for the overall program: one in the outer margin high (OMH) and three seaward of the OMH on distinct, margin-parallel basement ridges informally la-beled Ridges A, B, and C from north to south. The ridges are located in the continent–ocean transition (COT) zone ranging from the OMH to the interpreted steady-state oceanic crust (Ridge C) of the SCS. The main scientific objectives include In addition, sediment cores from the drill sites targeting primarily tectonic and basement objectives will provide information on the Cenozoic regional environmental development of the Southeast Asia margin.Expedition 368X a started after","PeriodicalId":406372,"journal":{"name":"International Ocean Discovery Program Preliminary Report","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132257119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
International ocean discovery program expedition 375 preliminary report: Hikurangi subduction margin coring and observatories unlocking the secrets of slow slip through drilling to sample and monitor the forearc and subducting plate, 8 March - 5 May 2018 2018年3月8日至5月5日,国际海洋发现计划远征375号初步报告:Hikurangi俯冲边缘取芯和观测站,通过钻孔取样和监测前弧和俯冲板块,解开慢滑的秘密
International Ocean Discovery Program Preliminary Report Pub Date : 2018-07-01 DOI: 10.14379/IODP.PR.375.2018
D. Saffer, L. Wallace, K. Petronotis, P. Barnes, R. Bell, M. Crundwell, C. E. D. Oliveira, Å. Fagereng, P. F. Fulton, A. Greve, R. Harris, Y. Hashimoto, A. Hüpers, M. Ikari, Y. Ito, H. Kitajima, S. Kutterolf, H. Lee, Xiang Li, M. Luo, P. Malié, F. Meneghini, J. Morgan, A. Noda, T. Fatouros
{"title":"International ocean discovery program expedition 375 preliminary report: Hikurangi subduction margin coring and observatories unlocking the secrets of slow slip through drilling to sample and monitor the forearc and subducting plate, 8 March - 5 May 2018","authors":"D. Saffer, L. Wallace, K. Petronotis, P. Barnes, R. Bell, M. Crundwell, C. E. D. Oliveira, Å. Fagereng, P. F. Fulton, A. Greve, R. Harris, Y. Hashimoto, A. Hüpers, M. Ikari, Y. Ito, H. Kitajima, S. Kutterolf, H. Lee, Xiang Li, M. Luo, P. Malié, F. Meneghini, J. Morgan, A. Noda, T. Fatouros","doi":"10.14379/IODP.PR.375.2018","DOIUrl":"https://doi.org/10.14379/IODP.PR.375.2018","url":null,"abstract":"Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expedition 375 was undertaken to investigate the processes and in situ conditions that underlie subduction zone SSEs at the northern Hikurangi Trough by (1) coring at four sites, including an active fault near the deformation front, the upper plate above the high-slip SSE sourc e region, and the incoming sedimentary succession in the Hikurangi Trough and atop the Tūranganui Knoll Seamount, and (2) installing borehole observatories in an active thrust near the deformation front and in the upper plate overlying the slow slip source region. Logging-while-drilling (LWD) data for this project were acquired as part of Expedition 372 (26 November 2017-4 January 2018; see th e Expedition 372 Preliminary Report for further details on the LWD acquisition program). Northern Hikurangi subduction margin SSEs recur every 1-2 years and thus provide an ideal opportunity to monitor deformation and associated changes in chemical and physical properties throughout the slow slip cycle. Sampling of material from the sedimentary section and oceanic basement of the subducting plate reveals the rock properties, composition, lithology, and structural character of material that is transported downdip into the SSE source region. A recent seafloor geodetic experiment raises the possibility that SSEs at northern Hikurangi may propagate all the way to the trench, indicating that the shallow thrust fault zone targeted during Expedition 375 may also lie in the SSE rupture area. Hence, sampling at this location provides insights into the composition, physical properties, and architecture of a shallow fault that may host slow slip. Expedition 375 (together with the Hikurangi subduction LWD component of Expedition 372) was designed to address three fundamental scientific objectives: (1) characterize the state and composition of the incoming plate and shallow plate boundary fault near the trench, which comprise the protolith and initial conditions for fault zone rock at greater depth and which may itself host shallow slow slip; (2) characterize material properties, thermal regime, and stress conditions in the upper plate above the core of the SSE source region; and (3) install observatories at an active thrust near the deformation front and in the upper plate above the SSE source to measure temporal variations in deformation, temperature, and fluid flow. The observatories will monitor volumetric strain (via pore pressure as a proxy) and the evolution of physical, hydrological, and chemical properties throughout the SSE cycle. Together, the coring, logging, and observatory data will test a suite of hypotheses about the fundamental mechanics and behavior of SSEs and their relationship to great earthquakes along the subduction interface.","PeriodicalId":406372,"journal":{"name":"International Ocean Discovery Program Preliminary Report","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125584122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信