Artificial Intelligence and Social Computing最新文献

筛选
英文 中文
Automated Decision Support for Collaborative, Interactive Classification 协作、交互分类的自动决策支持
Artificial Intelligence and Social Computing Pub Date : 1900-01-01 DOI: 10.54941/ahfe1003269
Randolph M. Jones, Robert Bixler, Robert P. Marinier, Lilia V. Moshkina
{"title":"Automated Decision Support for Collaborative, Interactive Classification","authors":"Randolph M. Jones, Robert Bixler, Robert P. Marinier, Lilia V. Moshkina","doi":"10.54941/ahfe1003269","DOIUrl":"https://doi.org/10.54941/ahfe1003269","url":null,"abstract":"Traditional classification approaches are straightforward: collect data, apply classification algorithms, then generate classification results. However, such approaches depend on data being amply available, which is not always the case. This paper describes an approach to maximize the utility of collected data through intelligent guidance of the data collection process. We present the development and evaluation of a knowledge-based decision-support system: the Logical Reasoner (LR), which guides data collection by unmanned ground and air assets to improve behavior classification. The LR is a component of a Human Directed and Controlled AI system (or “Human-AI” system) aimed at semi-autonomous classification of potential threat and non-threat individuals in a complex urban setting. The setting provides little to no pre-existing data; thus, the system collects, analyzes, and evaluates real-time human behavior data to determine whether the observed behavior is indicative of threat intent. The LR’s purpose is to produce contextual knowledge to help make productive decisions about where, when, and how to guide the vehicles in the data collection process. It builds a situational-awareness picture from the observed spatial relationships, activities, and interim classifications, then uses heuristics to generate new information-gathering goals, as well as to recommend which actions the vehicles should take to better achieve these goals. The system uses these recommendations to collaboratively help the operator direct the autonomous assets to individuals or places in the environment to maximize the effectiveness of evidence collection. LR is based on the Soar Cognitive Architecture which excels in supporting Human-AI collaboration. The described DoD-sponsored system has been developed and extensively tested for over three years, in simulation and in the field (with role-players). Results of these experiments have demonstrated that the LR decision support contributes to automated data collection and overall classification accuracy by the Human-AI team. This paper describes the development and evaluation of the LR based on multiple test events.The research reported in this document was performed under Defense Advanced Research Projects Agency (DARPA) contract #HR001120C0180, Urban Reconnaissance through Supervised Autonomy (URSA). The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon. Many thanks to Robert Marinier and Kris Kearns for their assistance in the preparation of this manuscript, as well as the entire ISOLATE R&D team.Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)","PeriodicalId":405313,"journal":{"name":"Artificial Intelligence and Social Computing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114895713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Common Ground in Human-Machine Teaming: Dimensions, Gaps, and Priorities 改进人机合作的共同点:维度、差距和优先级
Artificial Intelligence and Social Computing Pub Date : 1900-01-01 DOI: 10.54941/ahfe1001463
Robert Wray, James R. Kirk, J. Folsom-Kovarik
{"title":"Improving Common Ground in Human-Machine Teaming: Dimensions, Gaps, and Priorities","authors":"Robert Wray, James R. Kirk, J. Folsom-Kovarik","doi":"10.54941/ahfe1001463","DOIUrl":"https://doi.org/10.54941/ahfe1001463","url":null,"abstract":"“Common ground” is the knowledge, facts, beliefs, etc. that are shared between participants in some joint activity. Much of human conversation concerns “grounding,” or ensuring that some assertion is actually shared between participants. Even for highly trained tasks, such teammates executing a military mission, each participant devotes attention to contributing new assertions, making adjustments based on the statements of others, offering potential repairs to resolve potential discrepancies in the common ground and so forth.In conversational interactions between humans and machines (or “agents”), this activity to build and to maintain a common ground is typically one-sided and fixed. It is one-sided because the human must do almost all the work of creating substantive common ground in the interaction. It is fixed because the agent does not adapt its understanding to what the human knows, prefers, and expects. Instead, the human must adapt to the agent. These limitations create burdensome cognitive demand, result in frustration and distrust in automation, and make the notion of an agent “teammate” seem an ambition far from reachable in today’s state-of-art. We are seeking to enable agents to more fully partner in building and maintaining common ground as well as to enable them to adapt their understanding of a joint activity. While “common ground” is often called out as a gap in human-machine teaming, there is not an extant, detailed analysis of the components of common ground and a mapping of these components to specific classes of functions (what specific agent capabilities is required to achieve common ground?) and deficits (what kinds of errors may arise when the functions are insufficient for a particular component of the common ground?). In this paper, we provide such an analysis, focusing on the requirements for human-machine teaming in a military context where interactions are task-oriented and generally well-trained.Drawing on the literature of human communication, we identify the components of information included in common ground. We identify three main axes: the temporal dimension of common ground and personal and communal common ground. The analysis further subdivides these distinctions, differentiating between aspects of the common ground such as personal history between participants, norms and expectations based on those norms, and the extent to which actions taken by participants in a human-machine interaction context are “public” events or not. Within each dimension, we also provide examples of specific issues that may arise due to problems due to lack of common ground related to a specific dimension. The analysis thus defines, at a more granular level than existing analyses, how specific categories of deficits in shared knowledge or processing differences manifests in misalignment in shared understanding. The paper both identifies specific challenges and prioritizes them according to acuteness of need. In other words, not all of","PeriodicalId":405313,"journal":{"name":"Artificial Intelligence and Social Computing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129558305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Intelligence in aviation decision making process.The transition from extended Minimum Crew Operations to Single Pilot Operations (SiPO) 航空决策过程中的人工智能。从扩展的最小机组操作到单飞行员操作(SiPO)的过渡
Artificial Intelligence and Social Computing Pub Date : 1900-01-01 DOI: 10.54941/ahfe1001452
Dimitrios Ziakkas, Anastasios Plioutsias, K. Pechlivanis
{"title":"Artificial Intelligence in aviation decision making process.The transition from extended Minimum Crew Operations to Single Pilot Operations (SiPO)","authors":"Dimitrios Ziakkas, Anastasios Plioutsias, K. Pechlivanis","doi":"10.54941/ahfe1001452","DOIUrl":"https://doi.org/10.54941/ahfe1001452","url":null,"abstract":"Innovation, management of change, and human factors implementation in-flight operations portray the aviation industry. The International Air Transportation Authority (IATA) Technology Roadmap (IATA, 2019) and European Aviation Safety Agency (EASA) Artificial Intelligence (A.I.) roadmap propose an outline and assessment of ongoing technology prospects, which change the aviation environment with the implementation of A.I. and introduction of extended Minimum Crew Operations (eMCO) and Single Pilot Operations (SiPO). Changes in the workload will affect human performance and the decision-making process. The research accepted the universally established definition in the A.I. approach of “any technology that appears to emulate the performance of a human” (EASA, 2020). A review of the existing literature on Direct Voice Inputs (DVI) applications structured A.I. aviation decision-making research themes in cockpit design and users’ perception - experience. Interviews with Subject Matter Experts (Human Factors analysts, A.I. analysts, airline managers, examiners, instructors, qualified pilots, pilots under training) and questionnaires (disseminated to a group of professional pilots and pilots under training) examined A.I. implementation in cockpit design and operations. Results were analyzed and evaluated the suitability and significant differences of e-MCO and SiPO under the decision-making aspect.Keywords: Artificial Intelligence (A.I.), Extended Minimum Crew Operations (e-MCO), Single Pilot Operations (SiPO), cockpit design, ergonomics, decision making.","PeriodicalId":405313,"journal":{"name":"Artificial Intelligence and Social Computing","volume":"81 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128770263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Analysis of citizen's sentiment towards Philippine administration's intervention against COVID-19 民众对菲律宾政府干预新冠肺炎疫情的看法分析
Artificial Intelligence and Social Computing Pub Date : 1900-01-01 DOI: 10.54941/ahfe1001446
Matthew John Sino Cruz, M. D. De Leon
{"title":"Analysis of citizen's sentiment towards Philippine administration's intervention against COVID-19","authors":"Matthew John Sino Cruz, M. D. De Leon","doi":"10.54941/ahfe1001446","DOIUrl":"https://doi.org/10.54941/ahfe1001446","url":null,"abstract":"The COVID-19 pandemic affected the world. The World Health Organization or WHO issued guidelines the public must follow to prevent the spread of the disease. This includes social distancing, the wearing of facemasks, and regular washing of hands. These guidelines served as the basis for formulating policies by countries affected by the pandemic. In the Philippines, the government implemented different initiatives, following the guidelines of WHO, that aimed to mitigate the effect of the pandemic in the country. Some of the initiatives formulated by the administration include international and domestic travel restrictions, community quarantine, suspension of face-to-face classes and work arrangements, and phased reopening of the Philippine economy to name a few. The initiatives implemented by the government during the surge of COVID-19 disease have resulted in varying reactions from the citizens. The citizens expressed their reactions to these initiatives using different social media platforms such as Twitter and Facebook. The reactions expressed using these social media platforms were used to analyze the sentiment of the citizens towards the initiatives implemented by the government during the pandemic. In this study, a Bidirectional Recurrent Neural Network-Long Short-term memory - Support Vector Machine (BRNN-LSTM-SVM) hybrid sentiment classifier model was used to determine the sentiments of the Philippine public toward the initiatives of the Philippine government to mitigate the effects of the COVID-19 pandemic. The dataset used was collected and extracted from Facebook and Twitter using API and www.exportcomments.com from March 2020 to August 2020. 25% of the dataset was manually annotated by two human annotators. The manually annotated dataset was used to build the COVID-19 context-based sentiment lexicon, which was later used to determine the polarity of each document. Since the dataset contained unstructured and noisy data, preprocessing activities such as conversion to lowercase characters, removal of stopwords, removal of usernames and pure digit texts, and translation to the English language were performed. The preprocessed dataset was vectorized using Glove word embedding and was used to train and test the performance of the proposed model. The performance of the Hybrid BRNN-LSTM-SVM model was compared to BRNN-LSTM and SVM by performing experiments using the preprocessed dataset. The results show that the Hybrid BRNN-LSTM-SVM model, which gained 95% accuracy for the Facebook dataset and 93% accuracy for the Twitter dataset, outperformed the Support Vector Machine (SVM) sentiment model whose accuracy only ranges from 89% to 91% for both datasets. The results indicate that the citizens harbor negative sentiments towards the initiatives of the government in mitigating the effect of the COVID-19 pandemic. The results of the study may be used in reviewing the initiatives imposed during the pandemic to determine the issues which concern the ","PeriodicalId":405313,"journal":{"name":"Artificial Intelligence and Social Computing","volume":"241 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124653833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting Potential Depressed Users in Twitter Using a Fine-tuned DistilBERT Model 使用微调蒸馏酒模型检测Twitter中潜在的抑郁用户
Artificial Intelligence and Social Computing Pub Date : 1900-01-01 DOI: 10.54941/ahfe1001458
Miguel Antonio Adarlo, M. D. De Leon
{"title":"Detecting Potential Depressed Users in Twitter Using a Fine-tuned DistilBERT Model","authors":"Miguel Antonio Adarlo, M. D. De Leon","doi":"10.54941/ahfe1001458","DOIUrl":"https://doi.org/10.54941/ahfe1001458","url":null,"abstract":"With the spread of Major Depressive Disorder, otherwise known simply as depression, around the world, various efforts have been made to combat it and to potentially reach out to those suffering from it. Part of those efforts includes the use of technology, such as machine learning models, to screen a potential person for depression through various means, including social media narratives, such as tweets from Twitter. Hence, this study aims to evaluate how well a pre-trained DistilBERT, a transformer model for natural language processing that was fine-tuned on a set of tweets coming from depressed and non-depressed users, can detect potential users in Twitter as having depression. Two models were built using the same procedure of preprocessing, splitting, tokenizing, training, fine-tuning, and optimizing. Both the Base Model (trained on CLPsych 2015 Dataset) and the Mixed Model (trained on the CLPsych 2015 Dataset and a half of the dataset of scraped tweets) could detect potential users in Twitter for depression more than half of the time by demonstrating an Area under the Receiver Operating Curve (AUC) score of 65% and 63%, respectively, when evaluated using the test dataset. These models performed comparably in identifying potential depressed users in Twitter given that there was no significant difference in their AUC scores when subjected to a z-test at 95% confidence interval and 0.05 level of significance (p = 0.21). These results suggest DistilBERT, when fine-tuned, may be used to detect potential users in Twitter for depression.","PeriodicalId":405313,"journal":{"name":"Artificial Intelligence and Social Computing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133532843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamically monitoring crowd-worker's reliability with interval-valued labels 用区间值标签动态监测人群工作者的可靠性
Artificial Intelligence and Social Computing Pub Date : 1900-01-01 DOI: 10.54941/ahfe1003270
Chenyi Hu, Makenzie Spurling
{"title":"Dynamically monitoring crowd-worker's reliability with interval-valued labels","authors":"Chenyi Hu, Makenzie Spurling","doi":"10.54941/ahfe1003270","DOIUrl":"https://doi.org/10.54941/ahfe1003270","url":null,"abstract":"Crowdsourcing has rapidly become a computing paradigm in machine learning and artificial intelligence. In crowdsourcing, multiple labels are collected from crowd-workers on an instance usually through the Internet. These labels are then aggregated as a single label to match the ground truth of the instance. Due to its open nature, human workers in crowdsourcing usually come with various levels of knowledge and socio-economic backgrounds. Effectively handling such human factors has been a focus in the study and applications of crowdsourcing. For example, Bi et al studied the impacts of worker's dedication, expertise, judgment, and task difficulty (Bi et al 2014). Qiu et al offered methods for selecting workers based on behavior prediction (Qiu et al 2016). Barbosa and Chen suggested rehumanizing crowdsourcing to deal with human biases (Barbosa 2019). Checco et al studied adversarial attacks on crowdsourcing for quality control (Checco et al 2020). There are many more related works available in literature. In contrast to commonly used binary-valued labels, interval-valued labels (IVLs) have been introduced very recently (Hu et al 2021). Applying statistical and probabilistic properties of interval-valued datasets, Spurling et al quantitatively defined worker's reliability in four measures: correctness, confidence, stability, and predictability (Spurling et al 2021). Calculating these measures, except correctness, does not require the ground truth of each instance but only worker’s IVLs. Applying these quantified reliability measures, people have significantly improved the overall quality of crowdsourcing (Spurling et al 2022). However, in real world applications, the reliability of a worker may vary from time to time rather than a constant. It is necessary to monitor worker’s reliability dynamically. Because a worker j labels instances sequentially, we treat j’s IVLs as an interval-valued time series in our approach. Assuming j’s reliability relies on the IVLs within a time window only, we calculate j’s reliability measures with the IVLs in the current time window. Moving the time window forward with our proposed practical strategies, we can monitor j’s reliability dynamically. Furthermore, the four reliability measures derived from IVLs are time varying too. With regression analysis, we can separate each reliability measure as an explainable trend and possible errors. To validate our approaches, we use four real world benchmark datasets in our computational experiments. Here are the main findings. The reliability weighted interval majority voting (WIMV) and weighted preferred matching probability (WPMP) schemes consistently overperform the base schemes in terms of much higher accuracy, precision, recall, and F1-score. Note: the base schemes are majority voting (MV), interval majority voting (IMV), and preferred matching probability (PMP). Through monitoring worker’s reliability, our computational experiments have successfully identified possible a","PeriodicalId":405313,"journal":{"name":"Artificial Intelligence and Social Computing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115704897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A machine learning approach for optimizing waiting times in a hand surgery operation center 优化手外科手术中心等待时间的机器学习方法
Artificial Intelligence and Social Computing Pub Date : 1900-01-01 DOI: 10.54941/ahfe1003268
A. Schuller, M. Braun, Peter Hahn
{"title":"A machine learning approach for optimizing waiting times in a hand surgery operation center","authors":"A. Schuller, M. Braun, Peter Hahn","doi":"10.54941/ahfe1003268","DOIUrl":"https://doi.org/10.54941/ahfe1003268","url":null,"abstract":"For patients scheduled for surgery, long waiting times are unpleasant. However, scheduling that is too patient-oriented can lead to friction losses in the operating room and waiting times for the medical personnel. We have conducted an analysis of historical hand surgery data to improve forecasting of hand surgery durations, optimize operation room scheduling for physicians and patients and reduce overall waiting times. Several models have been evaluated to forecast surgery durations. A quantile-based approach based on the distribution of surgery durations has been tested in a scheduling simulation. This approach has indicated possibilities to gradually balance waiting times between patients and medical personnel. Within a field trial, a trained regression model has been successfully deployed in a hand surgery operation center.","PeriodicalId":405313,"journal":{"name":"Artificial Intelligence and Social Computing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114648080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supradyadic Trust in Artificial Intelligence 人工智能中的超然信任
Artificial Intelligence and Social Computing Pub Date : 1900-01-01 DOI: 10.54941/ahfe1001451
Stephen L. Dorton
{"title":"Supradyadic Trust in Artificial Intelligence","authors":"Stephen L. Dorton","doi":"10.54941/ahfe1001451","DOIUrl":"https://doi.org/10.54941/ahfe1001451","url":null,"abstract":"There is a considerable body of research on trust in Artificial Intelligence (AI). Trust has been viewed almost exclusively as a dyadic construct, where it is a function of various factors between the user and the agent, mediated by the context of the environment. A recent study has found several cases of supradyadic trust interactions, where a user’s trust in the AI is affected by how other people interact with the agent, above and beyond endorsements or reputation. An analysis of these surpradyadic interactions is presented, along with a discussion of practical considerations for AI developers, and an argument for more complex representations of trust in AI.","PeriodicalId":405313,"journal":{"name":"Artificial Intelligence and Social Computing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130715313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Automatic Labeling of Human Actions by Skeleton Clustering and Fuzzy Similarity 基于骨架聚类和模糊相似度的人类行为自动标记
Artificial Intelligence and Social Computing Pub Date : 1900-01-01 DOI: 10.54941/ahfe1001457
Chao-Lung Yang, Shang-Che Hsu, Simi Wang, Jing-Feng Nian
{"title":"Automatic Labeling of Human Actions by Skeleton Clustering and Fuzzy Similarity","authors":"Chao-Lung Yang, Shang-Che Hsu, Simi Wang, Jing-Feng Nian","doi":"10.54941/ahfe1001457","DOIUrl":"https://doi.org/10.54941/ahfe1001457","url":null,"abstract":"Nowadays, human action recognition (HAR) has been applied in multiple fields with the rapid growth of artificial intelligence and machine learning. Applying HAR onto industrial production lines can help on visualizing and analyzing the correlation between human operators and machine utilization to improve overall productivity. However, to train HAR model, the manual labeling of certain actions in a large amount of the collected video data is required and very costly. How to label a large amount of video automatically is an emerging practical problem in HAR research domain. This research proposed an automatic labeling framework by integrating Dynamic Time Warping (DTW), human skeleton clustering, and Fuzzy similarity to assign the labels based on the pre-defined human actions. First, the skeleton estimation method such as OpenPose was used to jointly detect key points of the human operator’s skeleton. Then, the skeleton data was converted to spatial-temporal data for calculating the DTW distance between skeletons. The groups of human skeletons can be clustered based on DTW distance among skeletons. Within a group of skeletons, the undefined skeletons will be compared with the pre-defined skeletons, considered as the references, and the labels are assigned according to the similarity against the references. The experimental dataset was created by simulating the human actions of manual drilling operations. By comparing with the manual labeled data, the results show that all of accuracy, precision, recall, and F1 of the proposed labeling model can achieve up to 95% with 40% saving time.","PeriodicalId":405313,"journal":{"name":"Artificial Intelligence and Social Computing","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130820055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generating a Multimodal Dataset Using a Feature Extraction Toolkit for Wearable and Machine Learning: A pilot study 使用可穿戴和机器学习的特征提取工具包生成多模态数据集:试点研究
Artificial Intelligence and Social Computing Pub Date : 1900-01-01 DOI: 10.54941/ahfe1001448
Edwin Marte Zorrilla, I. Villanueva, J. Husman, Matthew C. Graham
{"title":"Generating a Multimodal Dataset Using a Feature Extraction Toolkit for Wearable and Machine Learning: A pilot study","authors":"Edwin Marte Zorrilla, I. Villanueva, J. Husman, Matthew C. Graham","doi":"10.54941/ahfe1001448","DOIUrl":"https://doi.org/10.54941/ahfe1001448","url":null,"abstract":"Studies for stress and student performance with multimodal sensor measurements have been a recent topic of discussion among research educators. With the advances in computational hardware and the use of Machine learning strategies, scholars can now deal with data of high dimensionality and provide a way to predict new estimates for future research designs. In this paper, the process to generate and obtain a multimodal dataset including physiological measurements (e.g., electrodermal activity- EDA) from wearable devices is presented. Through the use of a Feature Generation Toolkit for Wearable Data, the time to extract clean and generate the data was reduced. A machine learning model from an openly available multimodal dataset was developed and results were compared against previous studies to evaluate the utility of these approaches and tools. Keywords: Engineering Education, Physiological Sensing, Student Performance, Machine Learning, Multimodal, FLIRT, WESAD","PeriodicalId":405313,"journal":{"name":"Artificial Intelligence and Social Computing","volume":"164 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120913185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信