World Sci. Annu. Rev. Artif. Intell.最新文献

筛选
英文 中文
Artificial Intelligence in Evidence-based Medicine: Challenges and Opportunities 循证医学中的人工智能:挑战与机遇
World Sci. Annu. Rev. Artif. Intell. Pub Date : 2023-06-16 DOI: 10.1142/s2811032323300025
Xue Li, Catherine Zou, R. Boots, Sen Wang, Weitong Chen, G. Zuccon
{"title":"Artificial Intelligence in Evidence-based Medicine: Challenges and Opportunities","authors":"Xue Li, Catherine Zou, R. Boots, Sen Wang, Weitong Chen, G. Zuccon","doi":"10.1142/s2811032323300025","DOIUrl":"https://doi.org/10.1142/s2811032323300025","url":null,"abstract":"","PeriodicalId":404894,"journal":{"name":"World Sci. Annu. Rev. Artif. Intell.","volume":"102 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115747374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Survey on Code Representation 代码表示研究综述
World Sci. Annu. Rev. Artif. Intell. Pub Date : 2023-05-22 DOI: 10.1142/s2811032323500017
Peter D. Nagy, Marzieh Ahmadi Najafabadi, Heidar Davoudi
{"title":"A Survey on Code Representation","authors":"Peter D. Nagy, Marzieh Ahmadi Najafabadi, Heidar Davoudi","doi":"10.1142/s2811032323500017","DOIUrl":"https://doi.org/10.1142/s2811032323500017","url":null,"abstract":"","PeriodicalId":404894,"journal":{"name":"World Sci. Annu. Rev. Artif. Intell.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128132037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recommendation System: A Survey and New Perspectives 推荐系统:调查与新视角
World Sci. Annu. Rev. Artif. Intell. Pub Date : 2023-03-08 DOI: 10.1142/s2811032323300013
Wei Wei, Sen Zhao, Ding Zou
{"title":"Recommendation System: A Survey and New Perspectives","authors":"Wei Wei, Sen Zhao, Ding Zou","doi":"10.1142/s2811032323300013","DOIUrl":"https://doi.org/10.1142/s2811032323300013","url":null,"abstract":"","PeriodicalId":404894,"journal":{"name":"World Sci. Annu. Rev. Artif. Intell.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121368543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Black-Box Attack using Adversarial Examples: A New Method of Improving Transferability 基于对抗性实例的黑盒攻击:一种提高可转移性的新方法
World Sci. Annu. Rev. Artif. Intell. Pub Date : 2022-12-16 DOI: 10.1142/s2811032322500059
Tao Wu, Tie Luo, D. Wunsch
{"title":"Black-Box Attack using Adversarial Examples: A New Method of Improving Transferability","authors":"Tao Wu, Tie Luo, D. Wunsch","doi":"10.1142/s2811032322500059","DOIUrl":"https://doi.org/10.1142/s2811032322500059","url":null,"abstract":"","PeriodicalId":404894,"journal":{"name":"World Sci. Annu. Rev. Artif. Intell.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129098956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multimodal Learning for Multi-Omics: A Survey 面向多组学的多模态学习研究综述
World Sci. Annu. Rev. Artif. Intell. Pub Date : 2022-11-29 DOI: 10.1142/S2811032322500047
Sina Tabakhi, M. N. I. Suvon, Pegah Ahadian, Haiping Lu
{"title":"Multimodal Learning for Multi-Omics: A Survey","authors":"Sina Tabakhi, M. N. I. Suvon, Pegah Ahadian, Haiping Lu","doi":"10.1142/S2811032322500047","DOIUrl":"https://doi.org/10.1142/S2811032322500047","url":null,"abstract":"With advanced imaging, sequencing, and profiling technologies, multiple omics data become increasingly available and hold promises for many healthcare applications such as cancer diagnosis and treatment. Multimodal learning for integrative multi-omics analysis can help researchers and practitioners gain deep insights into human diseases and improve clinical decisions. However, several challenges are hindering the development in this area, including the availability of easily accessible open-source tools. This survey aims to provide an up-to-date overview of the data challenges, fusion approaches, datasets, and software tools from several new perspectives. We identify and investigate various omics data challenges that can help us understand the field better. We categorize fusion approaches comprehensively to cover existing methods in this area. We collect existing open-source tools to facilitate their broader utilization and development. We explore a broad range of omics data modalities and a list of accessible datasets. Finally, we summarize future directions that can potentially address existing gaps and answer the pressing need to advance multimodal learning for multi-omics data analysis.","PeriodicalId":404894,"journal":{"name":"World Sci. Annu. Rev. Artif. Intell.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122831954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Modeling and Analysis of Discrete Facial Expressions with Dense Optical Flow-derived Features 具有密集光流衍生特征的离散面部表情建模与分析
World Sci. Annu. Rev. Artif. Intell. Pub Date : 2022-11-11 DOI: 10.1142/s2811032322500035
Shivangi Anthwal, D. Ganotra
{"title":"Modeling and Analysis of Discrete Facial Expressions with Dense Optical Flow-derived Features","authors":"Shivangi Anthwal, D. Ganotra","doi":"10.1142/s2811032322500035","DOIUrl":"https://doi.org/10.1142/s2811032322500035","url":null,"abstract":"","PeriodicalId":404894,"journal":{"name":"World Sci. Annu. Rev. Artif. Intell.","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133459678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early Detection of Gestures using Context-and-Gap-aware Predictive Pose Framework 使用上下文和间隙感知预测姿势框架的手势早期检测
World Sci. Annu. Rev. Artif. Intell. Pub Date : 2022-10-28 DOI: 10.1142/s2811032322500023
Nishant Bhattacharya, Suresh Sundaram
{"title":"Early Detection of Gestures using Context-and-Gap-aware Predictive Pose Framework","authors":"Nishant Bhattacharya, Suresh Sundaram","doi":"10.1142/s2811032322500023","DOIUrl":"https://doi.org/10.1142/s2811032322500023","url":null,"abstract":"","PeriodicalId":404894,"journal":{"name":"World Sci. Annu. Rev. Artif. Intell.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124923147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning-Based Downscaling of Temperatures for Monitoring Local Climate Change Using Global Climate Simulation Data 基于深度学习的温度降尺度全球气候模拟数据监测局部气候变化
World Sci. Annu. Rev. Artif. Intell. Pub Date : 2022-09-30 DOI: 10.1142/s2811032322500011
Firas Gerges, M. Boufadel, E. Bou‐Zeid, H. Nassif, J. T. Wang
{"title":"Deep Learning-Based Downscaling of Temperatures for Monitoring Local Climate Change Using Global Climate Simulation Data","authors":"Firas Gerges, M. Boufadel, E. Bou‐Zeid, H. Nassif, J. T. Wang","doi":"10.1142/s2811032322500011","DOIUrl":"https://doi.org/10.1142/s2811032322500011","url":null,"abstract":"The impact of climate change on the environment has become increasingly visible today, and foreseeing future climate events, which involves long-term prediction of climate variables (e.g., temperature, wind speed, precipitation, etc.) at a local small scale in a local region, is crucial for disaster risk management. General Circulation Models (GCMs) allow for the simulation of multiple climate variables, decades into the future (often till the year 2100). GCM simulations, however, are at a global large scale (from 100 km to 600 km) and are too coarse to monitor climate change at the local small scale. Statistical downscaling approaches are often applied to the GCM simulations to allow the evaluation of the GCM outputs at the local scale. Machine learning-based techniques are popular approaches for statistical downscaling. In this paper, we provide an overview of GCM downscaling with machine learning and present a case study that leverages deep learning to downscale weekly averages of the daily minimum and maximum temperatures in the Hackensack–Passaic watershed in New Jersey.","PeriodicalId":404894,"journal":{"name":"World Sci. Annu. Rev. Artif. Intell.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134086771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信