Deep Learning-Based Downscaling of Temperatures for Monitoring Local Climate Change Using Global Climate Simulation Data

Firas Gerges, M. Boufadel, E. Bou‐Zeid, H. Nassif, J. T. Wang
{"title":"Deep Learning-Based Downscaling of Temperatures for Monitoring Local Climate Change Using Global Climate Simulation Data","authors":"Firas Gerges, M. Boufadel, E. Bou‐Zeid, H. Nassif, J. T. Wang","doi":"10.1142/s2811032322500011","DOIUrl":null,"url":null,"abstract":"The impact of climate change on the environment has become increasingly visible today, and foreseeing future climate events, which involves long-term prediction of climate variables (e.g., temperature, wind speed, precipitation, etc.) at a local small scale in a local region, is crucial for disaster risk management. General Circulation Models (GCMs) allow for the simulation of multiple climate variables, decades into the future (often till the year 2100). GCM simulations, however, are at a global large scale (from 100 km to 600 km) and are too coarse to monitor climate change at the local small scale. Statistical downscaling approaches are often applied to the GCM simulations to allow the evaluation of the GCM outputs at the local scale. Machine learning-based techniques are popular approaches for statistical downscaling. In this paper, we provide an overview of GCM downscaling with machine learning and present a case study that leverages deep learning to downscale weekly averages of the daily minimum and maximum temperatures in the Hackensack–Passaic watershed in New Jersey.","PeriodicalId":404894,"journal":{"name":"World Sci. Annu. Rev. Artif. Intell.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Sci. Annu. Rev. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2811032322500011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The impact of climate change on the environment has become increasingly visible today, and foreseeing future climate events, which involves long-term prediction of climate variables (e.g., temperature, wind speed, precipitation, etc.) at a local small scale in a local region, is crucial for disaster risk management. General Circulation Models (GCMs) allow for the simulation of multiple climate variables, decades into the future (often till the year 2100). GCM simulations, however, are at a global large scale (from 100 km to 600 km) and are too coarse to monitor climate change at the local small scale. Statistical downscaling approaches are often applied to the GCM simulations to allow the evaluation of the GCM outputs at the local scale. Machine learning-based techniques are popular approaches for statistical downscaling. In this paper, we provide an overview of GCM downscaling with machine learning and present a case study that leverages deep learning to downscale weekly averages of the daily minimum and maximum temperatures in the Hackensack–Passaic watershed in New Jersey.
基于深度学习的温度降尺度全球气候模拟数据监测局部气候变化
气候变化对环境的影响在今天变得越来越明显,预测未来气候事件,包括对局部地区局部小尺度气候变量(如温度、风速、降水等)的长期预测,对灾害风险管理至关重要。一般环流模式(GCMs)允许模拟未来几十年(通常到2100年)的多种气候变量。然而,GCM模拟是在全球大尺度(从100公里到600公里)上进行的,而且过于粗糙,无法监测局部小尺度的气候变化。统计降尺度方法通常应用于GCM模拟,以便在局部尺度上对GCM输出进行评估。基于机器学习的技术是统计降尺度的流行方法。在本文中,我们概述了利用机器学习降低GCM尺度的方法,并提出了一个案例研究,该案例研究利用深度学习来降低新泽西州哈肯萨克-帕塞伊克流域每日最低和最高温度的周平均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信