Lucas Pinto Heckert Bastos , René Rodrigues , Carmen Lucia Ferreira Alferes , Debora Bonfim Neves da Silva , Danielle da Costa Cavalcante , Guilherme Brugger Lemos , Sergio Bergamaschi , Egberto Pereira
{"title":"Magma-induced thermal alteration in Devonian organic-rich rocks (Paraná Basin, Brazil): molecular transformations and clay-catalyzed maturation","authors":"Lucas Pinto Heckert Bastos , René Rodrigues , Carmen Lucia Ferreira Alferes , Debora Bonfim Neves da Silva , Danielle da Costa Cavalcante , Guilherme Brugger Lemos , Sergio Bergamaschi , Egberto Pereira","doi":"10.1016/j.orggeochem.2025.105083","DOIUrl":"10.1016/j.orggeochem.2025.105083","url":null,"abstract":"<div><div>Several studies have examined how high heating rates influence the molecular composition of organic matter, particularly in geological settings where magma interacts with organic-rich rocks. In Brazil, such interactions have been extensively documented in the Paraná Basin. However, the behavior of geochemical proxies under intense thermal stress, as well as the natural chemical products generated through the thermal cracking of organic matter, are not yet fully understood. In this study, a combination of bulk and molecular geochemical data from 233 m of Devonian strata in the Paraná Basin—intersected by two dolerite sills measuring 3.0 m and 0.86 m in thickness—was used to assess the extent and effects of magmatic heating on originally immature organic matter. The work includes a large dataset of total organic carbon and Rock-Eval pyrolysis along with thermal-maturity-related molecular geochemical proxies. The thermal evolution of organic matter was better assessed using methylated aromatic hydrocarbons, as saturate hydrocarbons are less resistant to high temperatures and may not respond well to rapid heating. The borehole profile was subdivided into four stages (I–IV) based on the response of geochemical proxies to thermal stress. The intermediate zone (Stages II and III) showed elevated MPI-1 (methylphenanthrene index) values and distorted saturate hydrocarbon ratios. Additionally, samples from this high thermal stress zone of the sills showed a significantly higher abundance of dimethyl alkanes—compared to less altered samples dominated by monomethyl alkanes. Multiple alkyl substitutions have been naturally favored in high-temperature zones by acidic clay mineral catalysis and sustained thermal stress, potentially from percolating hydrothermal fluids. The thermal alteration zone exceeds the expected halo from the two sills intersecting the borehole, which is interpreted as resulting from the percolation of hydrothermal fluids and/or a complex igneous body geometry.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"210 ","pages":"Article 105083"},"PeriodicalIF":2.5,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145128188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generation and maturation of diamondoids for petroleum reservoirs in the Tarim Basin, NW China","authors":"Shuang Yu , Yuanyuan Bian , Chenxi Zhou , Wenyu Huang , Haizu Zhang , Zhongyiao Xiao , Changchun Pan","doi":"10.1016/j.orggeochem.2025.105080","DOIUrl":"10.1016/j.orggeochem.2025.105080","url":null,"abstract":"<div><div>Diamondoid generation and maturation behaviors in natural system remain unresolved. Oils/condensates from the Tarim Basin have elevated diamondoid concentrations. Diamondoid concentrations and maturity ratios for 167 oils/condensates from the Tarim Basin were used to document diamondoid generation and maturation in combination with the maturity frameworks of the deep source rocks. These samples include 29 Kuqa condensates from the Kuqa Depression, and 45 Tabei oils/condensates from the Tabei (Northern Tarim) Uplift and neighboring slope area and 93 Tazhong oils/condensates from the Tazhong (Central Tarim) Uplift and neighboring slope area of the cratonic region. The main observations are: (1) Concentration distributions of 4- + 3-methyldiamantane (4 + 3MD) for the Kuqa condensates and the Tabei and Tazhong oils/condensates are consistent with the maturity frameworks of the Triassic source rocks in the Kuqa Depression and the Cambrian source rocks in the cratonic region of the Tarim Basin from basin modeling, respectively. Concentrations of total adamantanes (As), total diamantanes (Ds) and 4 + 3MD have a close linear positive correlation with each other for these studied oils/condensates. These results suggest that diamondoids were generated at increasing rate with increasing maturity of these deep source rocks and did not decompose in these source rocks at maturity up to %Ro 4.0–4.5 in the Tarim Basin. (2) The effectiveness of the nine diamondoid maturity ratios (MAI, MDI, DMAI-1, DMAI-2, TMAI-1, TMAI-2, DMDI-1, DMDI-2 and EAI) increases, while the influence of source facies on these maturity ratios, in particular on the last three ratios (DMDI-1, DMDI-2 and EAI) decreases with increasing maturity of the source rocks based on Pearson correlation coefficients (<em>r</em>) between each other among the nine maturity ratios and concentrations of As, Ds and 4 + 3MD and As/Ds ratio. (3) The maturities of the deep source rocks for the studied samples decrease in the sequence of the Kuqa condensates > the Tazhong oils/condensates > the Tabei oils/condensates based on the maximum values and ranges of the nine diamondoid maturity ratios and the <em>r</em> values between each other among the nine maturity ratios, concentrations of As, Ds and 4 + 3MD. and the As/Ds ratio. This sequence provides a constraint in basin modeling on the relative maturities of the Triassic source rocks in the Kuqa Depression and Cambrian source rocks in the cratonic region.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"211 ","pages":"Article 105080"},"PeriodicalIF":2.5,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145098726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weiqing Liu , Haiyang Li , Yu Qiao , Wei Wu , Jienan Pan , Chuanlong Mou , Jianxin Yao , Yao Chen , Changsong Lin
{"title":"Geochemical characteristics of Longtan transitional shale gas in the western Hubei Basin, northwest Middle Yangtze Block: Implications for the origin and carbon isotopes","authors":"Weiqing Liu , Haiyang Li , Yu Qiao , Wei Wu , Jienan Pan , Chuanlong Mou , Jianxin Yao , Yao Chen , Changsong Lin","doi":"10.1016/j.orggeochem.2025.105059","DOIUrl":"10.1016/j.orggeochem.2025.105059","url":null,"abstract":"<div><div>Shale gas geochemical characteristics are critical for genetic identification and enrichment mechanism analysis. Current research focuses predominantly on marine shale gas, whereas studies on transitional shale gas (particularly the Permian Longtan Formation in South China) remain relatively limited, which constrains our understanding of the geochemical characteristics and genesis of transitional shale gases. The geochemical characteristics of transitional shale gas from the upper Permian Longtan Formation in western Hubei Province indicate that the organic matter is predominantly sapropelic, with some humic organic matter. The gas composition of the Longtan Formation consists primarily of CH<sub>4</sub>, with a low content of C<sub>2</sub>H<sub>6</sub>. The δ<sup>13</sup>C<sub>CH4</sub> values range from −25.40 ‰ to −21.70 ‰, the δ<sup>13</sup>C<sub>C2H6</sub> values range from –32.00 ‰ to −27.02 ‰, and the δ<sup>2</sup>H<sub>CH4</sub> values range from −124.01 ‰ to −119.46 ‰. These findings imply that shale gas is composed mainly of oil-type gas of thermal origin, with a potentially minor presence of mixed gas. Isotope analysis of the shale gas reveals that it has undergone reversal (δ<sup>13</sup>C<sub>CH4</sub> > δ<sup>13</sup>C<sub>C2H6</sub>), which is attributed to the cracking of liquid hydrocarbons under overmature conditions. The CO<sub>2</sub> content ranges from 0.21 % to 2.33 % and the δ<sup>13</sup>C<sub>CO2</sub> values range from −21.80 ‰ to −19.00 ‰, suggesting that the CO<sub>2</sub> in the study area is of organic thermal origin. Additionally, a geochemical evolution pattern suggests that the gas composition of different sedimentary phases is controlled by the type of kerogen and the degree of thermal evolution. The multistage cracking of organic matter thermal evolution products caused the dynamic changes in carbon isotopes.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"208 ","pages":"Article 105059"},"PeriodicalIF":2.5,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144923054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yiju Liao , Alexandria Aspin , Xuan Fu , Kirtland Robinson , Ziming Yang
{"title":"Deamination of alicyclic and aromatic amines under geologically relevant hydrothermal conditions","authors":"Yiju Liao , Alexandria Aspin , Xuan Fu , Kirtland Robinson , Ziming Yang","doi":"10.1016/j.orggeochem.2025.105060","DOIUrl":"10.1016/j.orggeochem.2025.105060","url":null,"abstract":"<div><div>Amines are a particular group of organic compounds of interest to deep-sea biology, organic geochemistry, and astrobiology research, in large part due to their involvement in biological metabolism, such as in the form of amino acids and proteins, participation in the subsurface carbon (C) and nitrogen (N) cycles, as well as their relevance to biomolecular precursors on early Earth and potential biosignatures beyond Earth. Although there have been many studies on the deamination of amines under hydrothermal conditions, few have determined the relative deamination rates and degradation mechanisms among different amine structures. In this study, we investigate the reaction kinetics and pathways of a group of aromatic and alicyclic amines, including aniline, benzylamine, cyclohexylamine, and cyclohexylmethylamine, under geologically relevant temperatures (200–275 °C) and pH ranges (5–9) for up to 120 h. Among the studied amines, the amine reactivity generally follows a trend of aniline < cyclohexylamine < cyclohexylmethylamine < benzylamine. Alcohols and secondary amines/imines are observed as the major products of amines, whose formation could follow a nucleophilic substitution (S<sub>N</sub>1 or S<sub>N</sub>2) mechanism. Hydrothermal experiments at different pH also show that deamination occurs more readily under acidic than alkaline hydrothermal conditions, indicating that the aminium form (R-NH<sub>3</sub><sup>+</sup>) accelerates deamination. These results suggest that the kinetics and pathways of hydrothermal amine transformations are controlled by both the amine structure and solution pH, which have implications for predicting the deamination processes of organic N, release of inorganic N (e.g., ammonia), and N cycling in geologically relevant hydrothermal systems.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"209 ","pages":"Article 105060"},"PeriodicalIF":2.5,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144997622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Qin , Chiyang Liu , Junfeng Zhao , Faqi He , Wei Zhang , Lihua Yang , Nan Du , Deyong Shao
{"title":"Corrigendum to “Unravelling the origin of gas in tight sandstones of the Hangjinqi gas field, Ordos Basin, China: New insights from natural gas geochemistry data”. [Org. Geochem. 206 (2025) 105012]","authors":"Yang Qin , Chiyang Liu , Junfeng Zhao , Faqi He , Wei Zhang , Lihua Yang , Nan Du , Deyong Shao","doi":"10.1016/j.orggeochem.2025.105051","DOIUrl":"10.1016/j.orggeochem.2025.105051","url":null,"abstract":"","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"209 ","pages":"Article 105051"},"PeriodicalIF":2.5,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145061218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bei Liu , Maria Mastalerz , Juergen Schieber , David Bish
{"title":"Organic matter enrichment in black shales: How important are clay minerals?","authors":"Bei Liu , Maria Mastalerz , Juergen Schieber , David Bish","doi":"10.1016/j.orggeochem.2025.105058","DOIUrl":"10.1016/j.orggeochem.2025.105058","url":null,"abstract":"<div><div>Clay minerals possess large surface areas and have long been thought to contribute to organic matter (OM) enrichment in black shales through the adsorption of OM in clay mineral interlayers. In this study, we review OM types and their modes of occurrence in fresh muddy sediments and their lithified counterparts, black shales, as well as the potential role of clay-OM interactions during black shale deposition. Solid OM (tens of nanometer- to hundreds of micrometer-scale particles) is the dominant form of OM in fresh muddy sediments and black shales and is too large to be accommodated in the interlayer region (<5 nm) of smectite and interstratified illite/smectite. For this reason alone, it is implausible that an interlayer adsorption mechanism would be responsible for bulk organic carbon preservation in black shales. OM and clay minerals in nature are instead physically associated via the formation of floccules and aggregates, which serve to retard the microbial degradation of OM. The association of OM and clay minerals argues for a reevaluation of the impact of clay minerals on organic carbon preservation in the sedimentary systems and the global carbon cycle.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"210 ","pages":"Article 105058"},"PeriodicalIF":2.5,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145218389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Constantin Sandu , Khaled Arouri , Poorna Srinivasan , Estefania Endara Arguello , Assad H. Ghazwani , Ibrahim Atwah
{"title":"Generation of carbazoles in Type II-S source rocks: Experimental analysis for kinetic parameters estimation","authors":"Constantin Sandu , Khaled Arouri , Poorna Srinivasan , Estefania Endara Arguello , Assad H. Ghazwani , Ibrahim Atwah","doi":"10.1016/j.orggeochem.2025.105057","DOIUrl":"10.1016/j.orggeochem.2025.105057","url":null,"abstract":"<div><div>Carbazoles are nitrogen-based aromatic compounds generated from kerogen alongside main oil components and were used in many studies to constrain long migration distances and filling sequences of reservoirs. These compounds have great potential to be used in constraining migration in basin models due to their tendency to selectively change their composition along the migration path. To simulate their generation, a set of kinetic parameters are desired for compound characterization within the basin simulators. This study investigates the generation of carbazoles in Type II-S source rocks through hydrous pyrolysis experiments performed between 275–360 °C, and estimates the kinetic parameters based on the measured composition of pyrolysis products in both expelled and extracted fractions. Up to 870 ppm carbazole concentration was observed in extracted fluids with an average of 27 ppm and up to 70 ppm in expelled fluids but with a much lower average of 3 ppm. Comparing the carbazole yields in the extracted and expelled fractions leads to the conclusion that the bitumen fraction likely represents a primary step in producing carbazoles within the source rock. The kinetic parameters, in the form of activation energy varied between 40 and 70 kcal/mol for the generation process and 50–300 kcal/mol for degradation. Numeric simulations, using the kinetic parameters determined and a generic thermal history for the Arabian Basin, show a differential evolution of each compound that leads to a variation of composition in generated fluids. When compared with field measurements, the modeled composition can be an invaluable tool to constrain petroleum system models.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"208 ","pages":"Article 105057"},"PeriodicalIF":2.5,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144923053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shangli Liu , Haifeng Gai , Xinyue Shi , Peng Cheng , Tengfei Li , Qin Zhou , Sui Ji , Hui Tian
{"title":"Controls of organic matter content on shale oil occurrence and distribution: Insights from retained oil composition and pore structure in marine shales","authors":"Shangli Liu , Haifeng Gai , Xinyue Shi , Peng Cheng , Tengfei Li , Qin Zhou , Sui Ji , Hui Tian","doi":"10.1016/j.orggeochem.2025.105053","DOIUrl":"10.1016/j.orggeochem.2025.105053","url":null,"abstract":"<div><div>Total organic carbon (TOC) content is a crucial indicator in shale oil exploration due to its close correlation with shale oil content. However, the proportion of movable oil significantly decreases in high-TOC shales. Herein, eight marine shale samples from the same well, with TOC contents ranging from 1.86 % to 13.78 % and vitrinite reflectance values of 0.8–0.9 %, were analyzed to investigate the effect of TOC content on the occurrence and distribution of retained oils. Sequential extraction with various solvent mixtures revealed that extractable organic matter (EOM), as extracted by <em>n</em>-hexane/toluene (9:1v/v), primarily comprises saturated and aromatic hydrocarbons, which are chemically similar to the oils released by Rock-Eval pyrolysis before 300 °C (S<sub>1</sub> peak). Therefore, the EOM is an effective way to evaluate the free oil content in shales. By contrast, the EOMs extracted by dichloromethane/methanol (93:7 v/v) and tetrahydrofuran/acetone/methanol (50:25:25 v/v/v) are mainly composed of resins and asphaltenes that correspond to the oils released during Rock-Eval pyrolysis above 300 °C, indicating their predominant occurrence as adsorbed oil. After sequential extraction, the specific surface area and pore volume of shale samples increase by an average 369 % and 254 %, respectively. Pore structure analysis reveals that organic matter (OM) content significantly affects the occurrence space of retained oil. In the case of early oil window maturity, excessive OM can lead to a low free oil ratio, low storage space, high adsorption capacity, and high threshold pore diameter of movable oil, indicating that excessive OM is unfavorable for the enrichment of movable oil. Therefore, there may be an upper TOC limit for shale oil sweet spots. For our samples, the free oil content significantly decreases when TOC exceeds 10 wt%. This threshold may vary for different shales depending on thermal maturity, kerogen type, and pore structure. Shale dominated by Type I/II kerogen typically exhibit a lower optimal TOC threshold at the main oil generation stage (Cf. Type III kerogen), further emphasizing the importance of identifying these thresholds during exploration.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"208 ","pages":"Article 105053"},"PeriodicalIF":2.5,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144880327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simon T. Belt , Lukas Smik , Katrine Husum , Jochen Knies
{"title":"A potential new sea surface temperature proxy based on isomeric highly branched isoprenoid lipid biomarkers: EZ25","authors":"Simon T. Belt , Lukas Smik , Katrine Husum , Jochen Knies","doi":"10.1016/j.orggeochem.2025.105056","DOIUrl":"10.1016/j.orggeochem.2025.105056","url":null,"abstract":"<div><div>Two tri-unsaturated and isomeric (<em>E</em>/<em>Z</em>) highly branched isoprenoid (HBI) diatom lipid biomarkers were quantified in 228 water column samples collected from the English Channel, West Svalbard (Arctic), the Scotia Sea (Southern Ocean) and East Antarctica. We found that the relative amounts of the two HBIs correlate well with water temperatures taken at the time of sampling. Based on these findings and some other HBI data reported previously, we suggest that the proportion of the HBI <em>E</em>-isomer (termed EZ<sub>25</sub>) may serve as a new proxy for palaeo sea surface temperatures, including in the polar regions. Next steps will involve determination of EZ<sub>25</sub> in surface and downcore sediments to ascertain whether the temperature response described herein translates well to the geological record.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"208 ","pages":"Article 105056"},"PeriodicalIF":2.5,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144908201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luke M. Brosnan , Stephen F. Poropat , Madison Tripp , Sebastian Stanley , Peter Hopper , Xiao Sun , William D.A. Rickard , Antônio Á.F. Saraiva , Renan A.M. Bantim , Juliana M. Sayão , Alexander W.A. Kellner , Kliti Grice
{"title":"Can useful biomarker information be obtained from museum fossil specimens treated with Paraloid® B-72 acrylic resin?","authors":"Luke M. Brosnan , Stephen F. Poropat , Madison Tripp , Sebastian Stanley , Peter Hopper , Xiao Sun , William D.A. Rickard , Antônio Á.F. Saraiva , Renan A.M. Bantim , Juliana M. Sayão , Alexander W.A. Kellner , Kliti Grice","doi":"10.1016/j.orggeochem.2025.105054","DOIUrl":"10.1016/j.orggeochem.2025.105054","url":null,"abstract":"<div><div>Paraloid® resins, particularly Paraloid® B-72, are widely used in palaeontological preparation to stabilise fossils. However, their presence may interfere with organic geochemical analyses. To evaluate this, standard biomarker extraction protocols were applied to pure Paraloid® B-72, to a fossil bone previously treated with the resin, and to commercial grade acetone commonly used as its solvent. The resin was mobilised by dichloromethane-containing solvent mixtures during extraction and fractionation. Despite this, saturated and aromatic biomarkers were successfully isolated since the polyacrylate resin is insoluble in non-polar solvents. Paraloid® B-72 predominately eluted into the aromatic and polar fractions, but did not significantly impact saturated biomarker profiles. Insoluble residues isolated from these fractions analysed by flash pyrolysis–gas chromatography–mass spectrometry revealed compounds mainly from the resin. Microwave assisted solvent extraction appears to effectively separate Paraloid® B-72 from fossils, as no resin-derived monomers were detected in the extracted fossil pyrolysate. This suggests that the insoluble organic fraction of resin-stabilised fossils can be reliably studied using biomarker techniques with minimal interference. Time-of-flight secondary ion mass spectrometry (ToF–SIMS) analysis produced abundant organic fragments from Paraloid® B-72, but mapping specific oxygen-bearing peaks associated with the resin may allow researchers to distinguish regions containing indigenous organics from those contaminated by the consolidant. These findings indicate that, with appropriate analytical approaches, both soluble and insoluble organic fractions of Paraloid®-treated fossils can yield valid biomarker data, enabling chemical analysis of specimens previously deemed unsuitable due to conservation treatments.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"208 ","pages":"Article 105054"},"PeriodicalIF":2.5,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144842815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}