Nisreen Houssain Alsaoud, Doummar Hashim Nammour, Ali Yaseen Ali
{"title":"Susceptibility of Egg Stage of Potato Tuber Moth Phthorimaea operculella to Native Isolates of Beauveria bassiana","authors":"Nisreen Houssain Alsaoud, Doummar Hashim Nammour, Ali Yaseen Ali","doi":"10.5772/intechopen.78391","DOIUrl":"https://doi.org/10.5772/intechopen.78391","url":null,"abstract":"The pathogenicity of three local isolates of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuill was evaluated on eggs of potato tuber moth P. operculella (Zeller). The three isolates were coded as the following: B (isolate from Latakia), C (isolate from ICARDA) and D (isolate from Damascus). Three concentrations 10 4 , 10 5 , and 10 6 , respectively, conidia/ml were used for each isolate. Eggs in the control were sprayed by sterilized water. All tests were done under laboratory conditions of temperature 28 ± 2°C and relative humidity 40 ± 5%. Susceptibility tests showed significant differences in averages of hatching rate between the control and both isolates B and C when 1 × 10 6 conidia/ml was applied, with averages 18.3 and 26.6% for previous isolates respectively, in contrast to 38.3 for isolate D and 66.6% for control. Findings indicated that eggs of P. operculella seemed sensible to local isolates of B. bassiana in varying degree, but further studies are required about the efficiency of effective isolates for controlling eggs of this pest in natural conditions. C respectively. Susceptibility tests showed significant differences in averages of hatching rate between the control and both isolates B and C when 1 × 10 6 conidia/ml was applied, with averages 18.3 and 26.6% for previous isolates respectively, in contrast 38.3% for isolate D and 66.6% for control. Findings indicated that eggs of P. operculella seemed sensible to local isolates of B. bassiana in varying degree. Results encourage further studies about the efficiency of effective isolates for controlling eggs of this pest in natural conditions of store and field and testing the local isolates on the other stages (adults and larvae) under better condition than this research condition.","PeriodicalId":399269,"journal":{"name":"Moths - Pests of Potato, Maize and Sugar Beet","volume":"200 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121468625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Journey of the Potato Tuberworm Around the World","authors":"S. Rondon, Yulin Gao","doi":"10.5772/INTECHOPEN.81934","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.81934","url":null,"abstract":"Potato ( Solanum tuberosum L.) production is challenged by many factors including pests and diseases. Among insect pests, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae), known as the potato tuber worm or potato tuber moth, is considered one of the most impor- tant potato pests worldwide. Phthorimaea operculella is a cosmopolitan pest of solanaceous crops including potato, tomato ( Solanum lycopersicum L.), and other important row crops. Adults oviposit in leaves, stems, and tubers; immature stage mines leaves causing foliar dam- age, but most importantly, burrows into tubers rendering them unmarketable. Currently, pest management practices are effective in controlling P. operculella, but the effectiveness depends on many factors that will be discussed later in this chapter. Each section includes up-to-date information related to P. operculella biology, ecology, and control, including ori-gins, host range, life cycle, distribution, seasonal dynamics, and control methods.","PeriodicalId":399269,"journal":{"name":"Moths - Pests of Potato, Maize and Sugar Beet","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130194582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Bažok, Z. Drmić, M. Čačija, Martina Mrganić, H. Gašparić, D. Lemić
{"title":"Moths of Economic Importance in the Maize and Sugar Beet Production","authors":"R. Bažok, Z. Drmić, M. Čačija, Martina Mrganić, H. Gašparić, D. Lemić","doi":"10.5772/INTECHOPEN.78658","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.78658","url":null,"abstract":"Maize and sugar beet productions are often threatened by various pests, causing high yield losses. Economically, most important maize pest is European corn borer, while sugar beet moth and noctuid moths cause serious damage on the sugar beet. This chapter highlights an introduction to several case studies representing long-term field research results on these pests. Depending on the pest, each study investigated the population level, dynamics of emergence or flight, damage levels and possibilities of forecasting on different localities in Croatia. The results could be of great importance in management of these pests. The European corn borer management depends mainly on timely conducted control, but the damage level also depends on maize hybrid and climatic conditions of investigated area. Damages caused by sugar beet moth depend on the population level and on locality’s specific climate in a particular year. Sugar beet moth population and flight dynamics can be monitored by using pheromones, while pheromone application in forecasting and control showed to be disputable. Noctuid moths feed on the sugar beet foliage, causing high damages, especially on young plants. The damage level depends on the climatic conditions of the research area, and visual inspections of caterpillars are necessary for forecasting and control decision.Maize and sugar beet productions are often threatened by various pests, causing high yield losses. Economically, most important maize pest is European corn borer, while sugar beet moth and noctuid moths cause serious damage on the sugar beet. This chapter highlights an introduction to several case studies representing long-term field research results on these pests. Depending on the pest, each study investigated the population level, dynamics of emergence or flight, damage levels and possibilities of forecasting on different localities in Croatia. The results could be of great importance in management of these pests. The European corn borer management depends mainly on timely conducted control, but the damage level also depends on maize hybrid and climatic conditions of investigated area. Damages caused by sugar beet moth depend on the population level and on locality’s specific climate in a particular year. Sugar beet moth population and flight dynamics can be monitored by using pheromones, while pheromone application in forecasting and control showed to be disputable. Noctuid moths feed on the sugar beet foliage, causing high damages, especially on young plants. The damage level depends on the climatic conditions of the research area, and visual inspections of caterpillars are necessary for forecasting and control decision.","PeriodicalId":399269,"journal":{"name":"Moths - Pests of Potato, Maize and Sugar Beet","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124969995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introductory Chapter: Moths","authors":"F. Perveen, Anzela Khan","doi":"10.5772/INTECHOPEN.79639","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79639","url":null,"abstract":"The moths (Insecta: Lepidoptera) are the group of organisms allied to butterflies, having two pairs of wide wings shielded with microscopic scales. They are usually brightly colored and held flat at sitting posture. The word moths are derived from Scandinavian word mott, for maggot, perhaps a reference to the caterpillars of moths. Furthermore, about 165,000 species of moths, including microand macro-moths are found worldwide, many of which are yet to be described (Table 1) [1–3].","PeriodicalId":399269,"journal":{"name":"Moths - Pests of Potato, Maize and Sugar Beet","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132033027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}