Group Theory in Physics最新文献

筛选
英文 中文
Kinematical algebras 运动学代数
Group Theory in Physics Pub Date : 2018-09-12 DOI: 10.1142/9789813273610_0014
{"title":"Kinematical algebras","authors":"","doi":"10.1142/9789813273610_0014","DOIUrl":"https://doi.org/10.1142/9789813273610_0014","url":null,"abstract":"","PeriodicalId":395878,"journal":{"name":"Group Theory in Physics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124628049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FRONT MATTER 前页
Group Theory in Physics Pub Date : 2018-09-12 DOI: 10.1142/9789813273610_fmatter
{"title":"FRONT MATTER","authors":"","doi":"10.1142/9789813273610_fmatter","DOIUrl":"https://doi.org/10.1142/9789813273610_fmatter","url":null,"abstract":"","PeriodicalId":395878,"journal":{"name":"Group Theory in Physics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116614960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications to the construction of orthonormal bases of states 在构造状态的正交基中的应用
Group Theory in Physics Pub Date : 2018-09-12 DOI: 10.1142/9789813273610_0012
{"title":"Applications to the construction of orthonormal bases of states","authors":"","doi":"10.1142/9789813273610_0012","DOIUrl":"https://doi.org/10.1142/9789813273610_0012","url":null,"abstract":"","PeriodicalId":395878,"journal":{"name":"Group Theory in Physics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125170048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-dimensional Lie groups 三维李群
Group Theory in Physics Pub Date : 2018-09-12 DOI: 10.1142/9789813273610_0005
{"title":"Three-dimensional Lie groups","authors":"","doi":"10.1142/9789813273610_0005","DOIUrl":"https://doi.org/10.1142/9789813273610_0005","url":null,"abstract":"","PeriodicalId":395878,"journal":{"name":"Group Theory in Physics","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134399991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Representations of simple Lie algebras 单李代数的表示
Group Theory in Physics Pub Date : 2018-09-12 DOI: 10.1142/9789813273610_0008
{"title":"Representations of simple Lie algebras","authors":"","doi":"10.1142/9789813273610_0008","DOIUrl":"https://doi.org/10.1142/9789813273610_0008","url":null,"abstract":"","PeriodicalId":395878,"journal":{"name":"Group Theory in Physics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116179603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spacetime symmetries and their representations 时空对称性及其表示
Group Theory in Physics Pub Date : 2018-09-12 DOI: 10.1142/9789813273610_0013
{"title":"Spacetime symmetries and their representations","authors":"","doi":"10.1142/9789813273610_0013","DOIUrl":"https://doi.org/10.1142/9789813273610_0013","url":null,"abstract":"","PeriodicalId":395878,"journal":{"name":"Group Theory in Physics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132472554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simple Lie algebras 单李代数
Group Theory in Physics Pub Date : 2018-09-12 DOI: 10.1007/978-1-4612-2256-9_13
P. Francesco, P. Mathieu, D. Sénéchal
{"title":"Simple Lie algebras","authors":"P. Francesco, P. Mathieu, D. Sénéchal","doi":"10.1007/978-1-4612-2256-9_13","DOIUrl":"https://doi.org/10.1007/978-1-4612-2256-9_13","url":null,"abstract":"","PeriodicalId":395878,"journal":{"name":"Group Theory in Physics","volume":"122 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117316840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Symmetries in particles physics 粒子物理学中的对称性
Group Theory in Physics Pub Date : 2018-09-12 DOI: 10.1142/9789813273610_0015
{"title":"Symmetries in particles physics","authors":"","doi":"10.1142/9789813273610_0015","DOIUrl":"https://doi.org/10.1142/9789813273610_0015","url":null,"abstract":"","PeriodicalId":395878,"journal":{"name":"Group Theory in Physics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131406093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite groups: Basic structure theory 有限群:基本结构理论
Group Theory in Physics Pub Date : 2018-09-12 DOI: 10.1142/9789813273610_0003
{"title":"Finite groups: Basic structure theory","authors":"","doi":"10.1142/9789813273610_0003","DOIUrl":"https://doi.org/10.1142/9789813273610_0003","url":null,"abstract":"","PeriodicalId":395878,"journal":{"name":"Group Theory in Physics","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129545576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classical Lie algebras 经典李代数
Group Theory in Physics Pub Date : 2018-09-12 DOI: 10.1142/9789813273610_0009
Arun Ram
{"title":"Classical Lie algebras","authors":"Arun Ram","doi":"10.1142/9789813273610_0009","DOIUrl":"https://doi.org/10.1142/9789813273610_0009","url":null,"abstract":"1 Classical Lie algebras A Lie algebra is a vector space g with a bilinear map [, ] : g× g → g such that (a) [x, y] = −[y, x], for x, y ∈ g, and (b) (Jacobi identity) [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0, for all x, y, z ∈ g. A bilinear form 〈, 〉 : g× g → C is ad-invariant if, for all x, y, z ∈ g, 〈adx(y), z〉 = −〈y, adx(z)〉, where adx(y) = [x, y], (1.1) for x, y,∈ g. The Killing form is the inner product on g given by 〈x1, x2〉 = Tr(adxady)〉. (1.2) The Jacobi identity is equivalent to the fact that the Killing form is ad-invariant. Let g be a finite dimensional Lie algebra with a nondegenerate ad-invariant bilinear form. The nondegeneracy of the form means that if {xi} be a basis of g then the dual basis {xi } of g with respect to 〈, 〉 exists. The Casimir element of g is κ = ∑","PeriodicalId":395878,"journal":{"name":"Group Theory in Physics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129906279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信