Energy Storage Devices最新文献

筛选
英文 中文
Progress on Free-Standing Graphene Hybrid: Advantages and Future Scenario 独立石墨烯混合材料的进展:优势和未来展望
Energy Storage Devices Pub Date : 2019-11-08 DOI: 10.5772/intechopen.84275
Karthick Ramalingam, Fuming Chen
{"title":"Progress on Free-Standing Graphene Hybrid: Advantages and Future Scenario","authors":"Karthick Ramalingam, Fuming Chen","doi":"10.5772/intechopen.84275","DOIUrl":"https://doi.org/10.5772/intechopen.84275","url":null,"abstract":"Free-standing graphene (FSG) paper like electrodes has paid attention to the energy storage device application in the past decade. It befits to fabricate flexible devices due to its remarkable mechanical strength and offers high electrical conductivity. In this chapter, we explore the advantages and future prospects of FSG fresh candidate in rechargeable batteries. Herein, we summarized the synthetic strategies used for FSG fabrication and its properties, followed by its application in rechargeable batteries. Extensively, this chapter deals with fabrication of FSG hybrid composite papers for battery applications to understand the overall device performance. Specifically, we discuss the benefits of FSG electrodes over conventional electrode material and its fabrication in battery system. Ultimately, we conclude with the significance of FSG paper in battery application and forthcoming advantage for recycling purposes.","PeriodicalId":395630,"journal":{"name":"Energy Storage Devices","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128127769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling of a Contact-Less Electric-Vehicle Battery-Charging Station Fed from On-Grid Photovoltic Arrays 并网光伏阵列供电的非接触式电动汽车电池充电站建模
Energy Storage Devices Pub Date : 2019-10-29 DOI: 10.5772/intechopen.89530
E. A. Ebrahim
{"title":"Modeling of a Contact-Less Electric-Vehicle Battery-Charging Station Fed from On-Grid Photovoltic Arrays","authors":"E. A. Ebrahim","doi":"10.5772/intechopen.89530","DOIUrl":"https://doi.org/10.5772/intechopen.89530","url":null,"abstract":"Electric vehicles (EVs) are environmental friendly due to no exhaust gases or carbon dioxide. In addition, there is no noise through operation. However, up to now, there are some challenges that facing its spread through all over the world. The main problem that these vehicles face is the fast charging process of the used batteries through neat and clean source without plugs. So, this chapter deals with a proposed method for a contactless battery charger of both electric and hybrid electric vehicles (HEVs) from renewable resources. The chapter proposes a public station for fast charging. This station implies off-board battery charger fed from on-grid (OG) photovoltaic (PV) arrays through inductively power transfer (IPT). This comfortable 100 kW contactless power station is designed, modeled, and simulated as a general software package reliable to be used for any other station design. The air gap of the air-core transformer (ACT) divides the station into two parts. The first part implies roof-mounted PV array with its intelligent-controlled maximum power point tracking (MPPT) technique, power converter, three-level power inverter, and resonant compensator converter that operates at high frequency. The second one includes rectifiers and switched mode power converter with smart controller. The chapter includes samples for simulation results that are obtained from the Matlab software package.","PeriodicalId":395630,"journal":{"name":"Energy Storage Devices","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123801689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Design Methodologies for Sizing Electrochemical Storage in Renewable Energy Systems (Case Study: Wind Turbine System) 可再生能源系统中电化学存储的新设计方法(以风力发电系统为例)
Energy Storage Devices Pub Date : 2019-10-23 DOI: 10.5772/intechopen.85613
M. Belouda
{"title":"New Design Methodologies for Sizing Electrochemical Storage in Renewable Energy Systems (Case Study: Wind Turbine System)","authors":"M. Belouda","doi":"10.5772/intechopen.85613","DOIUrl":"https://doi.org/10.5772/intechopen.85613","url":null,"abstract":"This chapter presents four original methodologies for sizing electrochemical storage devices in renewable energy systems. The case study is taken to apply these methodologies on an electrochemical storage device (a battery bank) inside a wind turbine system. The storage device acts together with wind cycles and consumption profile, particularly for a remote application. In general, in a context of optimal design for such systems, the optimization process time (long processing time) is hampered by the wide number of system simulations caused by the long duration of the actual wind speed measurements used as input data for the problem. Two sizing methodologies are based on a statistical approach, and the two other methodologies are based on the synthesis of compact wind speed profiles by means of evolutionary algorithms. The results are discussed from the point of view of the relevance of the battery bank sizing and in terms of computation cost, this later issue being crucial in view of an integrated optimal design (IOD) process.","PeriodicalId":395630,"journal":{"name":"Energy Storage Devices","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127755146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen Energy Storage 氢储能
Energy Storage Devices Pub Date : 2019-09-27 DOI: 10.5772/intechopen.88902
D. Ali
{"title":"Hydrogen Energy Storage","authors":"D. Ali","doi":"10.5772/intechopen.88902","DOIUrl":"https://doi.org/10.5772/intechopen.88902","url":null,"abstract":"The dominating trend of variable renewable energy sources (RES) continues to underpin the early retirement of baseload power generating sources such as coal, nuclear, and natural gas steam generators; however, the need to maintain system reliability remains the challenge. Implementing energy storage with conventional power plants provides a method for load leveling, peak shaving, and time shifting allowing power quality improvement and reduction in grid energy management issues, implementing energy storage with RES smooth their intermittency, by storing the surplus in their generation for later use during their shortfall, thus enabling their high penetration into the electricity grid. Energy storage technologies (EST) can be classified according to many criteria like their application (permanent or portable), capacity, storage duration (short or long), and size (weight and volume). EST suited for short duration storage and low-to-medium power outputs are seen performing better in improving power quality, while those providing medium-to-high power outputs with long durations are seen better suited for energy management of electrical networks. With the growing deployment of renewable energy systems, EST must be utilized to allow the grid to absorb the increased integration of RES generation. The recent advances in hydrogen energy storage technologies (HEST) have unlocked their potential for use with constrained renewable generation. HEST combines hydrogen production, storage, and end use technologies with the renewable generation either in a directly connected configuration or in an indirectly connected configuration via the existing power network. This chapter introduces the hydrogen energy storage technology and its implementation in conjunction with renewable energy sources. The efficiency of renewable hydrogen energy storage systems (RHESS) will be explored with a techno-economic assessment. A levelized cost (LC) model that identifies the financial competitiveness of HEST in different application scenarios is given, where five scenarios are investigated to demonstrate the most financially competitive configuration. To address the absence of a commercial software tool that can quickly size an energy system incorporating HEST while using limited data, a deterministic modeling approach that enables a quick initial sizing of hybrid renewable hydrogen energy systems (HRHES) is given in this chapter. This modeling approach can achieve the initial sizing of a HRHES using only two input data, namely the available renewable energy resource and the load profile. A modeling of the effect of the electrolyzer thermal transients at start-up, when operated in conjunction with an intermittent renewable generation, on the quantity of hydrogen produced is also given in this chapter.","PeriodicalId":395630,"journal":{"name":"Energy Storage Devices","volume":"16 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120912752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vanadium Redox Flow Batteries: Electrochemical Engineering 钒氧化还原液流电池:电化学工程
Energy Storage Devices Pub Date : 2019-04-03 DOI: 10.5772/INTECHOPEN.85166
Sangwon Kim
{"title":"Vanadium Redox Flow Batteries: Electrochemical Engineering","authors":"Sangwon Kim","doi":"10.5772/INTECHOPEN.85166","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.85166","url":null,"abstract":"The importance of reliable energy storage system in large scale is increasing to replace fossil fuel power and nuclear power with renewable energy completely because of the fluctuation nature of renewable energy generation. The vanadium redox flow battery (VRFB) is one promising candidate in large-scale stationary energy storage system, which stores electric energy by changing the oxidation numbers of anolyte and catholyte through redox reaction. This chapter covers the basic principles of vanadium redox flow batteries, component technologies, flow configurations, operation strategies, and cost analysis. The thermodynamic analysis of the electrochemical reactions and the electrode reaction mechanisms in VRFB systems have been explained, and the analysis of VRFB performance according to the flow field and flow rate has been described. It is shown that the limiting current density of “flow-by” design is more than two times greater than that of “flowthrough” design. In the cost analysis of 10 kW/120 kWh VRFB system, stack and electrolyte account for 40 and 32% of total cost, respectively.","PeriodicalId":395630,"journal":{"name":"Energy Storage Devices","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125121294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Control Mechanisms of Energy Storage Devices 储能装置的控制机制
Energy Storage Devices Pub Date : 2019-02-18 DOI: 10.5772/INTECHOPEN.82327
Mahmoud Elsisi
{"title":"Control Mechanisms of Energy Storage Devices","authors":"Mahmoud Elsisi","doi":"10.5772/INTECHOPEN.82327","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.82327","url":null,"abstract":"The fast acting due to the salient features of energy storage systems leads to using of it in the control applications in power system. The energy storage systems such as superconducting magnetic energy storage (SMES), capacitive energy storage (CES), and the battery of plug-in hybrid electric vehicle (PHEV) can storage the energy and contribute the active power and reactive power with the power system to extinguish the rapid change in load demands and the renewable energy sources (RES). This chapter gives an overview about the modeling of energy storage devices and methods of control in them to adjust steady outputs.","PeriodicalId":395630,"journal":{"name":"Energy Storage Devices","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114764641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
New Energy Management Concepts for Hybrid and Electric Powertrains: Considering the Impact of Lithium Battery and Ultracapacitor Aging 混合动力和电动动力系统的新能源管理理念:考虑锂电池和超级电容器老化的影响
Energy Storage Devices Pub Date : 2019-01-21 DOI: 10.5772/INTECHOPEN.83770
F. Assadian, Kevin Mallon, B. Walker
{"title":"New Energy Management Concepts for Hybrid and Electric Powertrains: Considering the Impact of Lithium Battery and Ultracapacitor Aging","authors":"F. Assadian, Kevin Mallon, B. Walker","doi":"10.5772/INTECHOPEN.83770","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.83770","url":null,"abstract":"During the lifetime of an energy storage system, its health deteriorates from use due to irreversible internal changes to the system. This degradation results in decreased capacity and efficiency of the battery or capacitor. This chapter reviews empirical aging models for lithium-ion battery and ultracapacitor energy storage systems. It will explore how operating conditions like large currents, high temperature, or deep discharge cycles impact the health of the energy storage system. After reviewing aging models, this chapter will then show how these models can be used in vehicle energy management control systems to reduce energy storage system aging. This includes both aging-aware control and control of hybrid energy storage systems (systems that include both a battery and an ultracapacitor).","PeriodicalId":395630,"journal":{"name":"Energy Storage Devices","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123414287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
SiOx as a Potential Anode Material for Li-Ion Batteries: Role of Carbon Coating, Doping, and Structural Modifications SiOx作为锂离子电池的潜在负极材料:碳涂层、掺杂和结构修饰的作用
Energy Storage Devices Pub Date : 2018-11-27 DOI: 10.5772/INTECHOPEN.82379
Hyeon-Woo Yang, Sun Jae Kim
{"title":"SiOx as a Potential Anode Material for Li-Ion Batteries: Role of Carbon Coating, Doping, and Structural Modifications","authors":"Hyeon-Woo Yang, Sun Jae Kim","doi":"10.5772/INTECHOPEN.82379","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.82379","url":null,"abstract":"Despite the high energy density of SiO x , its practical use as an anode material for Li-ion batteries is hindered by its low electronic conductivity and sluggish electron transport kinetics. These disadvantageous properties result from the insulating nature of SiO 2 , which leads to electrical contact loss and poor cyclability. Herein, we synthesized a C-SiO x composite based on amorphous carbon and a SiO x matrix via the alcoholysis reaction between SiCl 4 and ethylene glycol. We then used nonpolar benzene to simultaneously achieve homogenous dispersion of the Si source and the formation of a carbon coating layer, resulting in the formation of a (C-SiO x )@C composite with exceptional electrochemical properties. Next, we performed structural modifications using Ti doping and a multiple-carbon matrix to successfully fabricate a (C-Ti x Si 1 − x O y )@C composite. The combination of Ti doping and carbon coating greatly enhanced the conductivity of SiO x ; moreover, the incorporated carbon acted as an effective oxide buffer, preventing structural degradation. The (C-Ti x Si 1 − x O y )@C composite exhibited excellent capacity retention of 88.9% over 600 cycles at 1 A g − 1 with a capacity of 828 mAh g − 1 .","PeriodicalId":395630,"journal":{"name":"Energy Storage Devices","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132246820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信