{"title":"Recursive Sequential Combustion: A Concept Study About a Momentum-Enhanced Blend of the Reactants With Recirculated Burnt Gases","authors":"F. Giuliani, Nina Paulitsch, Andrea Hofer","doi":"10.1115/gt2021-59592","DOIUrl":"https://doi.org/10.1115/gt2021-59592","url":null,"abstract":"\u0000 Over the last decade, new concepts have evolved to promote a significant azimuthal flow in annular combustors of gas turbines. The benefits are better flame propagation at ignition, positive flame-flame interaction, and better interaction with the burnt gases. Other advantages in terms of size, congestion and conditioning of the turbine inlet flow are also significant. The technical challenges reported by the literature are often related to the higher thermal stress of the flames on the walls compared to a conventional frame. Other sources of inspiration for this work are the principles of burnt gas recirculation, sequential combustion and flameless combustion.\u0000 This contribution focuses on a novel tangential burner arrangement inspired by the previous references. It offers a synthesis of key features and properties of the latter and goes even further. Here, a significant part of the burnt gases produced by one burner intentionally enters the inlet of the next burner, and so on along the azimuthal direction. This takes advantage of the closed loop aspect of an annular combustor when considering the toroidal direction. It also proposes a solution to the thermal load problem. We named this principle Recursive Sequential Combustion (RSC).\u0000 While the flame alignment is organised along the generatrix of the combustor’s annulus, one difficulty lies in the design of the lateral feeds of reactants and the lateral exit of the exhaust gases. A double-spiral combustor design is proposed, which has similarities with the Swiss Roll Combustor concept. It directs the flow in the toroidal direction, as well as it creates the favourable conditions for a dynamically stabilised premixed flame centred along the torus’ generatrix at some distance from the walls. This design maximises the interaction between the fresh reactants and the burnt gases. The technical challenge is to find the right balance in terms of momentum flux of the incoming and outgoing flows to keep the flame in the middle of the torus. If this concept is successful, a lean flame could be operated with an unmatched trade-off between stability, flexibility and low-emissions (including soot). The paper reports about the RSC concept, the design, and the early results.","PeriodicalId":395231,"journal":{"name":"Volume 3B: Combustion, Fuels, and Emissions","volume":"253 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117313049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Treleaven, A. Fischer, Claus Lahiri, M. Staufer, A. Garmory, G. Page
{"title":"The Effects of Forcing Direction on the Flame Transfer Function of a Lean-Burn Spray Flame","authors":"N. Treleaven, A. Fischer, Claus Lahiri, M. Staufer, A. Garmory, G. Page","doi":"10.1115/gt2021-59553","DOIUrl":"https://doi.org/10.1115/gt2021-59553","url":null,"abstract":"\u0000 The flame transfer function (FTF) of an industrial lean-burn fuel injector has been computed using large eddy simulation (LES) and compared to experimental measurements using the multi-microphone technique and OH* measurements. The flame transfer function relates the fluctuations of heat release in the combustion chamber to fluctuations of airflow through the fuel injector and is a critical part of thermoacoustic analysis of combustion systems. The multi-microphone method derives the FTF by forcing the flame acoustically, alternating from the upstream and downstream side. Simulations emulating this methodology have been completed using compressible large eddy simulations (LES). These simulations are also used to derive an FTF by measuring the fluctuations of mass flow rate and heat release rate directly which reduces the number of simulations per frequency to one, significantly reducing the simulation cost. Simulations acoustically forced from downstream are shown to result in a lower value of the FTF gain than simulations forced from upstream with a small change in phase, this is shown to be consistent with theory. Through using a slightly different definition of the FTF, this is also shown to be consistent with measurements of the heat release rate using OH* chemiluminescence however these results are inconsistent with the multi-microphone method result. The discrepancy comes from not having an accurate measurement of the acoustic impedance at the exit plane of the injector and from certain convective phenomena that alter the downstream velocity and pressure field with respect to the purely acoustic signal. All simulations show a lower gain in the FTF than the experiments but with good reproduction of phase. Previous work suggests this error is likely due to fluctuations of the fuel spray atomisation process due to the acoustic forcing which is not modelled in this study.","PeriodicalId":395231,"journal":{"name":"Volume 3B: Combustion, Fuels, and Emissions","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124609781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Shrivastava, Ishan Verma, Rakesh Yadav, Pravin M. Nakod, Stefano Orsino
{"title":"Comparison of Performance of Flamelet Generated Manifold Model With That of Finite Rate Combustion Model for Hydrogen Blended Flames","authors":"S. Shrivastava, Ishan Verma, Rakesh Yadav, Pravin M. Nakod, Stefano Orsino","doi":"10.1115/gt2021-60232","DOIUrl":"https://doi.org/10.1115/gt2021-60232","url":null,"abstract":"\u0000 International Air Transport Association (IATA) sets a 50% reduction in 2005 CO2 emissions levels by 2050, with no increase in net emissions after 2020 [1]. The association also expects the global aviation demand to double to 8.2 billion passengers per year by 2037. These issues have prompted the aviation industry to focus intensely on adopting sustainable aviation fuels (SAF). Further, reduction in CO2 emission is also an active area of research for land-based power generation gas turbine engines. And fuels with high hydrogen content or hydrogen blends are regarded as an essential part of future power plants. Therefore, clean hydrogen and other hydrogen-based fuels are expected to play a critical role in reducing greenhouse gas emissions in the future. However, the massive difference in hydrogen’s physical properties compared to hydrocarbon fuels, ignition, and flashback issues are some of the major concerns, and a detailed understanding of hydrogen combustion characteristics for the conditions at which gas turbines operate is needed. Numerical combustion analyses can play an essential role in exploring the combustion performance of hydrogen as an alternative gas turbine engine fuel. While several combustion models are available in the literature, two of the most preferred models in recent times are the flamelet generated manifold (FGM) model and finite-rate (FR) combustion model. FGM combustion model is computationally economical compared to the detailed/reduced chemistry modeling using a finite-rate combustion model. Therefore, this paper aims to understand the performance of the FGM model compared to detailed chemistry modeling of turbulent flames with different levels of hydrogen blended fuels. In this paper, a detailed comparison of different combustion characteristics like temperature, species, flow, and NOx distribution using FGM and finite rate combustion models is presented for three flame configurations, including the DLR Stuttgart jet flame [2], Bluff body stabilized Sydney HM1 flame [3] and dry-low-NOx hydrogen micro-mix combustion chamber [4]. One of the FGM model’s essential parameters is to select a suitable definition of the reaction progress variable. The reaction progress variable should monotonically increase from the unburnt region to the burnt region. The definition is first studied using a 1D premixed flame with different blend ratios and then used for the actual cases. 2D/3D simulations for the identified flames are performed using FGM and finite rate combustion models. Numerical results from both these models are compared with the available experimental data to understand FGM’s applicability. The results show that the FGM model performs reasonably well for pure hydrogen and hydrogen blended flames.","PeriodicalId":395231,"journal":{"name":"Volume 3B: Combustion, Fuels, and Emissions","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131870278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. D. Giorgi, Giacomo Cinieri, D. Fontanarosa, A. Ficarella
{"title":"Investigation on the Effects of Field Emission Plasma on the Performance of a Micro-Combustor","authors":"M. D. Giorgi, Giacomo Cinieri, D. Fontanarosa, A. Ficarella","doi":"10.1115/gt2021-60258","DOIUrl":"https://doi.org/10.1115/gt2021-60258","url":null,"abstract":"\u0000 This work provides a numerical investigation of the effects of micro field emission dielectric barrier discharge (FE-DBD) plasma actuation on the performance of a micro-combustion system composed of two straights perpendicular microchannels for propellant injection followed by a rectangular micro-combustion chamber in a T-shaped planar configuration.\u0000 Concerning the modeling, a novel two-step approach has been developed. The first step consisted in solving the chemistry of a sinusoidal plasma discharge in a zero-dimensional modeling. To this purpose, the collisional processes involved in the plasma discharge have been solved using a Boltzmann-equation approach, which permits to predict the electron impact reactions based on a two-temperature model. Furthermore, the zero-dimensional hypothesis used for computations assumed uniform plasma during the overall discharge duration. Concerning the plasma chemistry, excitation and de-excitation processes, electron-ion recombination reactions, attachment and detachment for electrons and neutral species have been considered in order to improve the prediction accuracy.\u0000 This step allowed to quantify the body force, the heat source and the propellant composition modification induced by sinusoidal plasma actuation operating at 10 MHz of repetition rate, atmospheric pressure and 300 K temperature. Therefore, the predicted cycle averaged plasma effects have been used in 2D steady-state simulations of the laminar, compressible, reactive micro flow, based on a continuum Navier-Stokes approach. SIMPLE pressure-velocity coupling scheme was chosen with a second order pressure spatial discretization. A second-order upwind scheme was applied. The hydrogen-oxygen combustion has been modeled using the Connaire mechanism. The comparison between the results of the reference case without plasma actuation, and those retrieved in presence of plasma actuation at different supplied voltages, highlighted the performance enhancement due to plasma discharge.","PeriodicalId":395231,"journal":{"name":"Volume 3B: Combustion, Fuels, and Emissions","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115262383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards Reduced Order Models of Small-Scale Acoustically Significant Components in Gas Turbine Combustion Chambers","authors":"S. Kowshik, S. Sridhar, N. Treleaven","doi":"10.1115/gt2021-59601","DOIUrl":"https://doi.org/10.1115/gt2021-59601","url":null,"abstract":"\u0000 Gas turbine combustion chambers contain numerous small-scale features that help to dampen acoustic waves and alter the acoustic mode shapes. This damping helps to alleviate problems such as thermoacoustic instabilities. During computational fluid dynamics simulations (CFD) of combustion chambers, these small-scale features are often neglected as the corresponding increase in the mesh cell count augments significantly the cost of simulation while the small physical size of these cells can present problems for the stability of the solver. In problems where acoustics are prevalent and critical to the validity of the simulation, the neglected small-scale features and the associated reduction in overall acoustic damping can cause problems with spurious, non-physical noise and prevents accurate simulation of transients and limit cycle oscillations. Low-order dynamical systems (LODS) and artificial neural networks (ANNs) are proposed and tested in their ability to represent a simple two-dimensional acoustically forced simulation of an orifice at multiple frequencies. These models were built using compressible CFD, using OpenFOAM, of an orifice placed between two ducts. The acoustic impedance of the orifice has been computed using the multi-microphone method and compared to a commonly used analytical model. Following this, the flow field downstream of the orifice has been modelled using both a LODS and ANN model. Both methods have shown the ability to closely represent the simulated dynamical flows at much lower computational cost than the original CFD simulation. This work opens the possibility of models that can dynamically predict the flow through, for instance, acoustic liners, dilution ports and fuel injectors in real engines during thermoacoustic instabilities without having to mesh and simulate these small-scale features directly. Such models may also assist in the accurate simulation of flame quenching due to cooling flows or the design of effusion cooled aerodynamic surfaces such as nozzle guide vanes (NGVs) and turbine blades.","PeriodicalId":395231,"journal":{"name":"Volume 3B: Combustion, Fuels, and Emissions","volume":"110 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120886380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}