{"title":"Session details: Research Paper Session 2","authors":"E. Leiss","doi":"10.1145/3255950","DOIUrl":"https://doi.org/10.1145/3255950","url":null,"abstract":"","PeriodicalId":393015,"journal":{"name":"Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116101244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Ganesh, Fabio Di Troia, C. A. Visaggio, Thomas H. Austin, M. Stamp
{"title":"Static Analysis of Malicious Java Applets","authors":"N. Ganesh, Fabio Di Troia, C. A. Visaggio, Thomas H. Austin, M. Stamp","doi":"10.1145/2875475.2875477","DOIUrl":"https://doi.org/10.1145/2875475.2875477","url":null,"abstract":"In this research we consider the problem of detecting malicious Java applets, based on static analysis. Dynamic analysis can be more informative, since it is immune to many common obfuscation techniques, while static analysis is often more efficient, since it does not require code execution or emulation. Consequently, static analysis is generally preferred, provided the results are comparable to those obtained using dynamic analysis. We conduct experiments using three techniques that have been employed in previous studies of metamorphic malware. We show that our static approach can detect malicious Java applets with greater accuracy than previously published research that relied on dynamic analysis.","PeriodicalId":393015,"journal":{"name":"Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics","volume":"590 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123135652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Differential Privacy for Collaborative Filtering Recommender Algorithm","authors":"Xue Zhu, Yuqing Sun","doi":"10.1145/2875475.2875483","DOIUrl":"https://doi.org/10.1145/2875475.2875483","url":null,"abstract":"Collaborative filtering plays an essential role in a recommender system, which recommends a list of items to a user by learning behavior patterns from user rating matrix. However, if an attacker has some auxiliary knowledge about a user purchase history, he/she can infer more information about this user. This brings great threats to user privacy. Some methods adopt differential privacy algorithms in collaborative filtering by adding noises to a rating matrix. Although they provide theoretically private results, the influence on recommendation accuracy are not discussed. In this paper, we solve the privacy problem in recommender system in a different way by applying the differential privacy method into the procedure of recommendation. We design two differentially private recommender algorithms with sampling, named Differentially Private Item Based Recommendation with sampling (DP-IR for short) and Differentially Private User Based Recommendation with sampling(DP-UR for short). Both algorithms are based on the exponential mechanism with a carefully designed quality function. Theoretical analyses on privacy of these algorithms are presented. We also investigate the accuracy of the proposed method and give theoretical results. Experiments are performed on real datasets to verify our methods.","PeriodicalId":393015,"journal":{"name":"Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116605541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Session details: Research Paper Session 1","authors":"Stephen S. H. Huang","doi":"10.1145/3255946","DOIUrl":"https://doi.org/10.1145/3255946","url":null,"abstract":"","PeriodicalId":393015,"journal":{"name":"Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125065759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How Can We Enable Privacy in an Age of Big Data Analytics?","authors":"C. Landwehr","doi":"10.1145/2875475.2875489","DOIUrl":"https://doi.org/10.1145/2875475.2875489","url":null,"abstract":"Even though some seem to think privacy is dead, we are all still wearing clothes, as Bruce Schneier observed at a recent conference on surveillance[1]. Yet big data and big data analytics are leaving some of us feeling a bit more naked than before. This talk will provide some personal observations on privacy today and then outline some research areas where progress is needed to enable society to gain the benefits of analyzing large datasets without giving up more privacy than necessary. Not since the early 1970s, when computing pioneer Willis Ware chaired the committee that produced the initial Fair Information Practice Principles [2] has privacy been so much in the U.S. public eye. Snowden's revelations, as well as a growing awareness that merely living our lives seems to generate an expanding \"digital exhaust.\" Have triggered many workshops and meetings. A national strategy for privacy research is in preparation by a Federal interagency group. The ability to analyze large datasets rapidly and to extract commercially useful insights from them is spawning new industries. Must this industrial growth come at the cost of substantial privacy intrusions?","PeriodicalId":393015,"journal":{"name":"Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126886592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marko Dimjasevic, Simone Atzeni, I. Ugrina, Zvonimir Rakamaric
{"title":"Evaluation of Android Malware Detection Based on System Calls","authors":"Marko Dimjasevic, Simone Atzeni, I. Ugrina, Zvonimir Rakamaric","doi":"10.1145/2875475.2875487","DOIUrl":"https://doi.org/10.1145/2875475.2875487","url":null,"abstract":"With Android being the most widespread mobile platform, protecting it against malicious applications is essential. Android users typically install applications from large remote repositories, which provides ample opportunities for malicious newcomers. In this paper, we evaluate a few techniques for detecting malicious Android applications on a repository level. The techniques perform automatic classification based on tracking system calls while applications are executed in a sandbox environment. We implemented the techniques in the maline tool, and performed extensive empirical evaluation on a suite of around 12,000 applications. The evaluation considers the size and type of inputs used in analyses. We show that simple and relatively small inputs result in an overall detection accuracy of 93% with a 5% benign application classification error, while results are improved to a 96% detection accuracy with up-sampling. This indicates that system-call based techniques are viable to be used in practice. Finally, we show that even simplistic feature choices are effective, suggesting that more heavyweight approaches should be thoroughly (re)evaluated.","PeriodicalId":393015,"journal":{"name":"Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics","volume":"150 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132125106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Session details: Keynote Session","authors":"C. Ordonez","doi":"10.1145/3255949","DOIUrl":"https://doi.org/10.1145/3255949","url":null,"abstract":"","PeriodicalId":393015,"journal":{"name":"Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics","volume":"158 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124415012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics","authors":"","doi":"10.1145/2875475","DOIUrl":"https://doi.org/10.1145/2875475","url":null,"abstract":"","PeriodicalId":393015,"journal":{"name":"Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130025840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}