International Conference on Electronic Materials and Nanotechnology for Green Environment (ENGE 2020)最新文献

筛选
英文 中文
Mixed-dimensional stackable electronics enabled by freestanding 2D/3D materials 通过独立的2D/3D材料实现混合维度可堆叠电子器件
Jeehwan Kim
{"title":"Mixed-dimensional stackable electronics enabled by freestanding 2D/3D materials","authors":"Jeehwan Kim","doi":"10.2172/1769354","DOIUrl":"https://doi.org/10.2172/1769354","url":null,"abstract":"2D material-based devices have received great deal of attention as they can be easily stacked to obtain multifunctionality. With their ultrathin thicknesses, such multifunctioning devices become so flexible and conformal that they can be placed onto any 3D featured surfaces. However, 2D heterostructures are typically demonstrated as stacked flakes where single or few devices can be fabricated due to lack of strategies for layer-by-layer stacking of 2D materials at the wafer scale. In this talk, I will discuss about our unique strategy to isolate wafer-scale 2D materials into monolayers and stack them into a heterostructures by using a layer-resolved splitting (LRS) technique [1]. This technique enables my group at MIT to explore unprecedented wafer-scale 2D heterodevices including integrated photonics, 3D neuromorphic computing, and microLEDs, which will be introduced in my talk. While 2D heterostructures promise interesting futuristic devices, the performance of 2D material-based devices is substantially inferior to that of conventional 3D semiconductor materials. However, 3D materials exist as their bulk form, thus it is challenging to stack them together for heterostructures. Obviously, conformal coating of such single-crystalline bulks on 3D features is impossible. My group at MIT has recently invented a 2D materials-based layer transfer (2DLT) technique that can produce single-crystalline freestanding membranes from any compound materials with their excellent semiconducting performance [2-4]. This technique is based on remote epitaxy of single-crystalline films on graphene followed by peeling from graphene. Stacking of freestanding 3D material membranes will enable unprecedented 3D heterostructures whose performance is expected to be superior to that of 2D heterostructures. I will talk about our group’s effort to apply single-crystalline freestanding membranes for flexible, conformal electronics as well as for 3D heterostructures. Finally, I will conclude my talk by discussing perspectives of coupling 2D-3D freestanding membranes for 2D-3D mixed heterostructured devices that can be enabled by our LRS and 2DLT techniques [5,6].","PeriodicalId":390918,"journal":{"name":"International Conference on Electronic Materials and Nanotechnology for Green Environment (ENGE 2020)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133402735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信