{"title":"AI-based Fast Design for General Fiber-to-waveguide Grating Couplers","authors":"Zhenjia Zeng, Qiangsheng Huang, Sailing He","doi":"10.2528/pierm23072703","DOIUrl":"https://doi.org/10.2528/pierm23072703","url":null,"abstract":"|Utilizing deep learning to replace numerical simulation solvers for electromagnetic wave propagation is a promising approach for the rapid design of photonic devices. However, to realize the advantages of deep learning for rapid design, it is essential to apply it to a general device structure. In this study, we propose a method that employs deep learning to assist in fast design of a general grating coupler structure. We use a modi(cid:12)ed 1D-ResNet18(1D-MR18) to predict the coupling efficiency of various grating couplers at different wavelengths. After comparing and selecting the optimal combination of learning rate, activation functions, and batch normalization size, the 1D-MR18 demonstrates remarkable accuracy ( MSE : 2 : 18 (cid:2) 10 (cid:0) 5 , R 2 : 0 : 969, MAE : 0 : 003). By integrating the 1D-MR18 with the adaptive particle swarm algorithm, we can efficiently design periodic and nonuniform grating couplers that meet various functional requirements, including single-wavelength grating couplers, multi-wavelength grating couplers, and robust grating couplers. The time for designing a single device is no more than 2 minutes, and the shortest is only 17 seconds. This novel approach of employing deep learning for the fast and efficient design from standard photonic device structures offers valuable insights and guidance for photonic devices design.","PeriodicalId":39028,"journal":{"name":"Progress in Electromagnetics Research M","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135954498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Optimization of 2D Photonic Crystal Based Compact All Optical T Splitter for Photonic Integrated Circuits","authors":"Poonam Jindal, Aarti Bansal","doi":"10.2528/pierm23080801","DOIUrl":"https://doi.org/10.2528/pierm23080801","url":null,"abstract":"","PeriodicalId":39028,"journal":{"name":"Progress in Electromagnetics Research M","volume":"148 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134890666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global Optimization for Extinction Curve Reconstruction in Inverse Electromagnetic Scattering of Multiparticle Aggregates","authors":"Ying Li Thong, Tiem Leong Yoon","doi":"10.2528/pierm23052601","DOIUrl":"https://doi.org/10.2528/pierm23052601","url":null,"abstract":"|Generalized Mie theory provides a theoretical solution to the extinction cross-section curve of an electromagnetic scattering event with a multiparticle aggregate, given the con(cid:12)gurational information of the constituent particles. However, deducing the con(cid:12)guration of the aggregate from the extinction cross-section curve is a nontrivial inverse problem that can be cast as a global optimization problem. To address this challenge, we propose a computational scheme that combines global optimization search algorithms with a calculator known as the Generalized Multiparticle Mie-solution. The scheme is tested using mock scattering cross-section curves based on randomly generated aggregate con(cid:12)gurations. The scheme successfully reproduces the scattering curve by minimizing the discrepancy between the two scattering curves. However, the ground-truth con(cid:12)guration is not reproduced, as initially expected. This is due to the inability of the global optimization algorithm scheme used in the present work to correctly locate the global minimum in the high-dimensional parameter space. Nonetheless, the partial success of the proposed scheme to reconstruct the mock curves provides an instructive experience for future attempts to solve the inverse electromagnetic scattering problem by (cid:12)ne-tuning the present approach.","PeriodicalId":39028,"journal":{"name":"Progress in Electromagnetics Research M","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135651240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fubin Pang, Shi Chen, Jianfei Ji, Yiyi Jing, Sijia Liu, Chongqing Jiao
{"title":"Low-frequency Magnetic Shielding of a Cavity Formed by Two Imperfectly Conducting Sheets: Effect of Sheet-to-sheet Distance and Comparison with the Single-sheet Configuration","authors":"Fubin Pang, Shi Chen, Jianfei Ji, Yiyi Jing, Sijia Liu, Chongqing Jiao","doi":"10.2528/pierm23082601","DOIUrl":"https://doi.org/10.2528/pierm23082601","url":null,"abstract":"","PeriodicalId":39028,"journal":{"name":"Progress in Electromagnetics Research M","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135561471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Series-fed Antenna Array without Beam Deterioration Using Miniaturized Bandpass Filters for Phase-slope Balancing","authors":"Huanhuan Shi, Xin Guo, Wen Wu","doi":"10.2528/pierm23021702","DOIUrl":"https://doi.org/10.2528/pierm23021702","url":null,"abstract":"","PeriodicalId":39028,"journal":{"name":"Progress in Electromagnetics Research M","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135612282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
May Abd Elazeem El-Azem Abo-Elhassan, Asmaa Elsayed Farahat, Khalid Fawzy Ahmed Hussein
{"title":"Wideband Circularly Polarized Planar Antenna for X-band Applications","authors":"May Abd Elazeem El-Azem Abo-Elhassan, Asmaa Elsayed Farahat, Khalid Fawzy Ahmed Hussein","doi":"10.2528/pierm23072401","DOIUrl":"https://doi.org/10.2528/pierm23072401","url":null,"abstract":"","PeriodicalId":39028,"journal":{"name":"Progress in Electromagnetics Research M","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135501621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Measurement and Prediction of Signal Strength of Wireless Sensor Network","authors":"Li Yang Foong, Soo Yong Lim, Kheong Sann Chan","doi":"10.2528/pierm23070301","DOIUrl":"https://doi.org/10.2528/pierm23070301","url":null,"abstract":"—This paper utilizes an efficient prediction model using the concept of ray-tracing based on the Theory of Geometrical Optics (GO) to predict the signal strength between two wireless sensor nodes within an indoor environment, which can provide aid to designers in the implementation of Wireless Sensor Networks (WSNs). WSN is a technology that is widely used for functions such as collecting and processing data, then transmitting it wirelessly within the network. WSNs are typically autonomous and self-organizing networks of nodes that communicate wirelessly with each other and collaborate to perform tasks such as data processing, sensing, aggregation, and forwarding. With the increasing prevalence of WSNs in indoor environments, installations of numerous sensor nodes are necessary to collect and transmit data in certain areas, which builds up to a single network. Thus, to ensure the functionality of the WSNs, it is of utmost importance to ensure a reliable connection between the nodes, which is directly affected by its location and placement. The prediction model developed in this work is built using MATLAB software, which is then implemented into a Graphical User Interface (GUI) using MATLAB App Designer, which allows modifications to be made to the prediction model as to fit the user’s environment. The results of our prediction model are compared against experimental ones obtained through physical measurements using wireless communications technologies such as ZigBee and Bluetooth Low Energy (BLE).","PeriodicalId":39028,"journal":{"name":"Progress in Electromagnetics Research M","volume":"155 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134981399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine Learning Assisted Multi-objective Planar Antenna Array Synthesis for Interference Mitigation in Next Generation Wireless Systems","authors":"Sahiti Vankayalapati, Lakshman Pappula","doi":"10.2528/pierm23081903","DOIUrl":"https://doi.org/10.2528/pierm23081903","url":null,"abstract":"","PeriodicalId":39028,"journal":{"name":"Progress in Electromagnetics Research M","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135910041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}