{"title":"Effect of Lubrication on the Changes in Tensile Properties of Cotton Sewing Thread at Different Stages of Sewing","authors":"V. Midha, S. Verma","doi":"10.3993/jfbim00322","DOIUrl":"https://doi.org/10.3993/jfbim00322","url":null,"abstract":"Friction forces play a very important role in performance of sewing thread during the sewing process. Various finishes are applied over sewing threads to reduce the friction forces, which help in masking the basic properties of sewing thread and reduce the yarn to metal friction and yarn to yarn friction. In this paper, the effect of lubrication (%) on tensile properties of sewing thread is measured at four sewing stages: before sewing, after dynamic loading at the tension regulator, after passage through the needle and fabric assembly, and after bobbin thread interaction. It is found that as the lubrication per cent increases friction coefficient decreases, in general. Due to this, the loss in tensile properties of the sewing threads during sewing decrease. Tenacity loss decreases during all sewing stages, as the lubrication percentage increases.","PeriodicalId":38559,"journal":{"name":"Journal of Fiber Bioengineering and Informatics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49214522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Super Dye Adsorption Capability of Natural Superfine Down Particles for Organic Contaminant from Binary Dye Mixture","authors":"Fengxiang Chen, Huiyu Yang, Yaling Wang, Keshuai Liu, Xin Liu, Weilin Xu","doi":"10.3993/jfbim00305","DOIUrl":"https://doi.org/10.3993/jfbim00305","url":null,"abstract":"Reuse of waste resources is still a challenging issue for public health and ecosystem protection. Herein, natural superfine down particles (NSDP) were successfully prepared from the wasted down fibers and investigated for the removal of methylene blue (MB) and methyl orange (MO) dyes from the binary dye solution. The adsorbent was characterized by scanning electron microscopy (SEM) and N 2 adsorption. The adsorption behavior of NSDP for these two dyes was investigated as a function of pH. The results showed that the NSDP surface has surface area of 7 277 cm 2 /g and an abundance of functional groups (carboxyl, hydroxyl and amine-groups). The adsorption capacity of NSDP was strongly pH-dependence. The results indicated that NSDP can be used as an efficient and economic adsorbent to remove dyes in the textile effluents.","PeriodicalId":38559,"journal":{"name":"Journal of Fiber Bioengineering and Informatics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41617495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acquisition of Plate-making Process Knowledge for Smart Clothing CAD Systems","authors":"Hui Guo, B. Ying, Xin Zhang, Jing Qi","doi":"10.3993/jfbim00295","DOIUrl":"https://doi.org/10.3993/jfbim00295","url":null,"abstract":"The digital design of the clothing model currently existing in the clothing enterprise is still only an auxiliary tool in the sense of drawing. This type of garment computer-aided design (CAD) systems can not integrate the design principles and knowledge of the clothing professional field, similar design and expert experience into the system, which leads to the need for the plate-making to rely on the personal experience of the pattern maker, and there is a problem of low design efficiency. The intelligent clothing CAD system for tailoring the needs of clothing personalization can solve the defects of traditional CAD by curing the knowledge of clothing layout design. In this paper, through the method of plate-making experiment, the knowledge of garment plate-making process is analyzed and refined, and the garment model design model is constructed by using directed graph. The method of applying the model to smart garment CAD systems is illustrated by an example.","PeriodicalId":38559,"journal":{"name":"Journal of Fiber Bioengineering and Informatics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44593824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bending Speed Dependence Properties of Stiffness of Anisotropic Viscoelastic Fin Containing Fiber Composite Dilatant Fluid","authors":"Shunichi Kobayashi, Kosuke Sugiyama","doi":"10.3993/JFBIM00296","DOIUrl":"https://doi.org/10.3993/JFBIM00296","url":null,"abstract":"The stiffness of the elastic fin for underwater propulsion may need to change concerning its bending speed. In order to realize the bending speed dependence of stiffness in relation to the structure, we have developed an anisotropic viscoelastic fin containing fiber composite dilatant fluid. For the bending test of the fin to examine its stiffness, the top of the fin is fixed, while the base of the fin is rotated. The bending resistance force, as the apparent stiffness of the fin, was measured by the load cell connected to the top of the fin. Bending resistance of the fin containing dilatant fluid increased as the average angular velocity of bending increased. Furthermore, bending resistance of the fin increased according to the existence of fiber, especially the fin along the longitudinal direction of the fiber. This developed fin is a highly functional structure, which can adapt to the demands of changing optimum stiffness with regard to different directions of deformation speed.","PeriodicalId":38559,"journal":{"name":"Journal of Fiber Bioengineering and Informatics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42146914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study about Hydrophilic Modification of PTFE Membrane","authors":"Yuxuan Zeng","doi":"10.3993/JFBIM00320","DOIUrl":"https://doi.org/10.3993/JFBIM00320","url":null,"abstract":"Polytetrafluoroethylene (PTFE) membrane is widely used in medicine, clothing, chemical, electronics and other fields. However, due to the highly symmetrical structure of the PTFE, the absence of reactive radical, high crystallinity, low surface energy and poor surface wetting, these properties of PTFE affect its compound with other materials. In order to improve the adhesion property of PTEF membrane, the surface must be modified. In this paper, the surface melting deposition method was used to improve the hydrophilicity of PTFE membrane. The PTFE membrane is immersed in a suspension of nano-TiO2, and then deposited by melting at a high temperature. Sintering and depositing TiO2 particles on the surface of the PTFE membrane. The molecules of the viscous substance enter the surface layer of the PTFE membrane to form a modified surface layer. The interface strength of PTFE membrane is increased, and the surface activity of PTEF membrane is increased, and the hydrophilicity of the PTFE membrane is improved. It is easier that PTFE membrane is combined with other materials. The best treatment process for the modification by melting deposition is as follows: the optimum treatment temperature is 350 ◦C, and the optimum treatment time is 30 min.","PeriodicalId":38559,"journal":{"name":"Journal of Fiber Bioengineering and Informatics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46504255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis and Characterization of Wool Keratin/Hydroxyapatite/Alginate Composites","authors":"Jing Zhu, Jiasheng Li","doi":"10.3993/JFBIM00309","DOIUrl":"https://doi.org/10.3993/JFBIM00309","url":null,"abstract":"Interests in HA/polymer composites for bone tissue engineering have escalated due to their excellent biological response to damaged tissues. HA/polymer composites have been researched as potential implant in bone defects and voids. In this paper, HA was co-precipitated with two polymers including wool keratin and alginate. By changing the concentrations of wool keratin solution, alginate solution and Ca2+ and PO3− 4 solution, the ratios of inorganic and organic phase were changed. The final result shows that HA embedded in the organic phase well and HA nanoparticles grown on the surface of wool keratin and linear alginate macromolecules formed cross-linking around Ca2+ of HA nanoparticles.","PeriodicalId":38559,"journal":{"name":"Journal of Fiber Bioengineering and Informatics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46805929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingfa Feng, Li Liu, Hui Zou, Xiaomei Zheng, Xiaochen Li
{"title":"Research on Ease of Protective Clothing Based on Three-dimensional Human Body Scanning","authors":"Mingfa Feng, Li Liu, Hui Zou, Xiaomei Zheng, Xiaochen Li","doi":"10.3993/JFBIM00303","DOIUrl":"https://doi.org/10.3993/JFBIM00303","url":null,"abstract":"The experiment recruited 18 young healthy males as the subjects. Four postures with a limited range of movement during outdoor activity were captured by the mean of a 3D scanning system. The grids of rows and columns were made on the skin surface before scanning. The grids’ distance in terms of skin stretch was measured between the static posture and the four experimental postures. A paired sample T-test was conducted to test that the variation in skin length change for each part of the body. Among them, there were more significant changes in the horizontal direction for the small shoulder width, back width, bust, hip, thigh circumference, knee circumference, big arm circumference and elbow circumference. In the vertical direction, except for the inner lines of the legs, all measured sizes changed significantly. Through further analysis, it was found that the back length and the back width were relatively active factors that affected the entire upper limb movement. Finally, according to the changes in the measured sizes, it is necessary to explore protective clothing in terms of ease.","PeriodicalId":38559,"journal":{"name":"Journal of Fiber Bioengineering and Informatics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45945794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermal Protective Properties of Aerogel-coated Kevlar Woven Fabrics","authors":"M. Venkataraman, Xiaoman Xiong, J. Novotná","doi":"10.3993/JFBIM00321","DOIUrl":"https://doi.org/10.3993/JFBIM00321","url":null,"abstract":"In this work, silica aerogels were incorporated with high-performance Kevlar fabrics by coating to deal with heat transfer problems under a severe environment. Thermal protective properties of the prepared fabrics were evaluated by using a laser system coupled with a thermometer which records the back-surface temperature of the fabric under laser radiation. The effect of aerogel content as well as pixel time used for laser radiation on thermal protection was investigated and discussed. Meanwhile, thermal properties of the fabrics under ambient temperature were tested with a thermal camera, thermal insulation values of the fabrics with different coatings were compared and analyzed. Moreover, fly ash nanoparticles were used for coating as well to investigate their effect on thermal performance. The findings in this study can be used for further research in aerogel-based high-performance materials for thermal protection.","PeriodicalId":38559,"journal":{"name":"Journal of Fiber Bioengineering and Informatics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44341937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Differences in Clothing Pressure between Bandages and Stockings","authors":"T. Mitsuno, Lijing Wang, R. Padhye","doi":"10.3993/JFBIM00317","DOIUrl":"https://doi.org/10.3993/JFBIM00317","url":null,"abstract":"Bandages and stockings are used in a wide variety of ways to provide pressure in medical application; bandages are used to compress part of the leg while a stocking is used to compress the whole leg. The proper use of a bandage or stocking depends on the healthcare setting. To understand the compression effects of bandages and stockings, the pressure of a bandage was compared with that of a stocking made under the same design conditions using Lycra yarn (4.4 Tex, type: T-127c). Multiple-regression analysis was carried out to clarify the factors affecting clothing pressure. The bandage/stocking clothing pressures were explained by the same three factors (i.e., the stretching rates across the width and along circumference and the radius curvature). The relation between stocking pressure (Y) and bandage pressure (x) was linear; Y = 0.89x (R2= 0.984). The pressure of a stocking needs to be 11% greater than that of a bandage to achieve the same effect.","PeriodicalId":38559,"journal":{"name":"Journal of Fiber Bioengineering and Informatics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44238970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guoqing Zhang, Changwei Cai, G. Zhu, Lan Zhou, Guojin Liu
{"title":"Preparation, Properties and Encapsulation of High Thermostability Phase-change Material","authors":"Guoqing Zhang, Changwei Cai, G. Zhu, Lan Zhou, Guojin Liu","doi":"10.3993/JFBIM00307","DOIUrl":"https://doi.org/10.3993/JFBIM00307","url":null,"abstract":"Microcapsules containing phase change materials (PCM) have been attracting much attention due to its applications in many energy storage fields. However, most PCM microcapsules have relatively low thermostability with an onset decomposition temperature of about 150 ◦C, which to some extent restricts their applications. In this study, high chain ester of dodecanol laurate was first synthesized with raw materials of 1-dodecanol and lauric acid by esterification reaction under catalysis, and then the ester as core material was encapsulated using PMMA by emulsion polymerization. The resultant products, including the ester and the PCM microcapsules, were respectively characterized by using infrared spectroscopy (IR), differential scanning calorimeter (DSC), thermogravimetry (TG), laser particle size analyzer and scanning electron microscope (SEM). The synthesized dodecanol laurate have a high purity according to IR spectrum analysis and suitable phase temperature range of 22-30 ◦C from DSC measurement. In addition, the ester also showed good thermal properties with a latent heat of 206 J/g, small super-cooling degree of 0.5 ◦C and high thermal evaporation temperature of 220 ◦C, which would be very suitable for application in PCM energy storage materials. Using the above ester as core material, the PCM microcapsules were successfully fabricated by emulsification and polymerization processes. The prepared microcapsules showed perfect spherical shape with size about 865 nm and high heat storage performance with a latent energy of 118 J/g. Owing to high evaporation temperature of ester core material itself and further encapsulation, the prepared PCM microcapsules showed higher thermostability. TG results suggested that the microcapsules had a high onset weightless temperature which was over 252 ◦C, it was a significant increment comparing to those PCM microcapsules reported by most literatures. Moreover, thermo-regulating cotton fibers were fabricated by using the above PCM microcapsules. It’s seen that the PCM microcapsules deposited on the fibers uniformly and the fibers had a latent heat of 20.18 J/g.","PeriodicalId":38559,"journal":{"name":"Journal of Fiber Bioengineering and Informatics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45996100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}