Maryam Omar, Hafeez Ur Rehman, Omar Bin Samin, Moutaz Alazab, Gianfranco Politano, Alfredo Benso
{"title":"CapGAN: Text-to-Image Synthesis Using Capsule GANs","authors":"Maryam Omar, Hafeez Ur Rehman, Omar Bin Samin, Moutaz Alazab, Gianfranco Politano, Alfredo Benso","doi":"10.3390/info14100552","DOIUrl":"https://doi.org/10.3390/info14100552","url":null,"abstract":"Text-to-image synthesis is one of the most critical and challenging problems of generative modeling. It is of substantial importance in the area of automatic learning, especially for image creation, modification, analysis and optimization. A number of works have been proposed in the past to achieve this goal; however, current methods still lack scene understanding, especially when it comes to synthesizing coherent structures in complex scenes. In this work, we propose a model called CapGAN, to synthesize images from a given single text statement to resolve the problem of global coherent structures in complex scenes. For this purpose, skip-thought vectors are used to encode the given text into vector representation. This encoded vector is used as an input for image synthesis using an adversarial process, in which two models are trained simultaneously, namely: generator (G) and discriminator (D). The model G generates fake images, while the model D tries to predict what the sample is from training data rather than generated by G. The conceptual novelty of this work lies in the integrating capsules at the discriminator level to make the model understand the orientational and relative spatial relationship between different entities of an object in an image. The inception score (IS) along with the Fréchet inception distance (FID) are used as quantitative evaluation metrics for CapGAN. IS recorded for images generated using CapGAN is 4.05 ± 0.050, which is around 34% higher than images synthesized using traditional GANs, whereas the FID score calculated for synthesized images using CapGAN is 44.38, which is ab almost 9% improvement from the previous state-of-the-art models. The experimental results clearly demonstrate the effectiveness of the proposed CapGAN model, which is exceptionally proficient in generating images with complex scenes.","PeriodicalId":38479,"journal":{"name":"Information (Switzerland)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135095663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ganjar Alfian, Muhammad Qois Huzyan Octava, Farhan Mufti Hilmy, Rachma Aurya Nurhaliza, Yuris Mulya Saputra, Divi Galih Prasetyo Putri, Firma Syahrian, Norma Latif Fitriyani, Fransiskus Tatas Dwi Atmaji, Umar Farooq, Dat Tien Nguyen, Muhammad Syafrudin
{"title":"Customer Shopping Behavior Analysis Using RFID and Machine Learning Models","authors":"Ganjar Alfian, Muhammad Qois Huzyan Octava, Farhan Mufti Hilmy, Rachma Aurya Nurhaliza, Yuris Mulya Saputra, Divi Galih Prasetyo Putri, Firma Syahrian, Norma Latif Fitriyani, Fransiskus Tatas Dwi Atmaji, Umar Farooq, Dat Tien Nguyen, Muhammad Syafrudin","doi":"10.3390/info14100551","DOIUrl":"https://doi.org/10.3390/info14100551","url":null,"abstract":"Analyzing customer shopping habits in physical stores is crucial for enhancing the retailer–customer relationship and increasing business revenue. However, it can be challenging to gather data on customer browsing activities in physical stores as compared to online stores. This study suggests using RFID technology on store shelves and machine learning models to analyze customer browsing activity in retail stores. The study uses RFID tags to track product movement and collects data on customer behavior using receive signal strength (RSS) of the tags. The time-domain features were then extracted from RSS data and machine learning models were utilized to classify different customer shopping activities. We proposed integration of iForest Outlier Detection, ADASYN data balancing and Multilayer Perceptron (MLP). The results indicate that the proposed model performed better than other supervised learning models, with improvements of up to 97.778% in accuracy, 98.008% in precision, 98.333% in specificity, 98.333% in recall, and 97.750% in the f1-score. Finally, we showcased the integration of this trained model into a web-based application. This result can assist managers in understanding customer preferences and aid in product placement, promotions, and customer recommendations.","PeriodicalId":38479,"journal":{"name":"Information (Switzerland)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135199489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"BibRank: Automatic Keyphrase Extraction Platform Using Metadata","authors":"Abdelrhman Eldallal, Eduard Barbu","doi":"10.3390/info14100549","DOIUrl":"https://doi.org/10.3390/info14100549","url":null,"abstract":"Automatic Keyphrase Extraction involves identifying essential phrases in a document. These keyphrases are crucial in various tasks such as document classification, clustering, recommendation, indexing, searching, summarization, and text simplification. This paper introduces a platform that integrates keyphrase datasets and facilitates the evaluation of keyphrase extraction algorithms. The platform includes BibRank, an automatic keyphrase extraction algorithm that leverages a rich dataset obtained by parsing bibliographic data in BibTeX format. BibRank combines innovative weighting techniques with positional, statistical, and word co-occurrence information to extract keyphrases from documents. The platform proves valuable for researchers and developers seeking to enhance their keyphrase extraction algorithms and advance the field of natural language processing.","PeriodicalId":38479,"journal":{"name":"Information (Switzerland)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135301714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Omar Azib Alkhudaydi, Moez Krichen, Ans D. Alghamdi
{"title":"A Deep Learning Methodology for Predicting Cybersecurity Attacks on the Internet of Things","authors":"Omar Azib Alkhudaydi, Moez Krichen, Ans D. Alghamdi","doi":"10.3390/info14100550","DOIUrl":"https://doi.org/10.3390/info14100550","url":null,"abstract":"With the increasing severity and frequency of cyberattacks, the rapid expansion of smart objects intensifies cybersecurity threats. The vast communication traffic data between Internet of Things (IoT) devices presents a considerable challenge in defending these devices from potential security breaches, further exacerbated by the presence of unbalanced network traffic data. AI technologies, especially machine and deep learning, have shown promise in detecting and addressing these security threats targeting IoT networks. In this study, we initially leverage machine and deep learning algorithms for the precise extraction of essential features from a realistic-network-traffic BoT-IoT dataset. Subsequently, we assess the efficacy of ten distinct machine learning models in detecting malware. Our analysis includes two single classifiers (KNN and SVM), eight ensemble classifiers (e.g., Random Forest, Extra Trees, AdaBoost, LGBM), and four deep learning architectures (LSTM, GRU, RNN). We also evaluate the performance enhancement of these models when integrated with the SMOTE (Synthetic Minority Over-sampling Technique) algorithm to counteract imbalanced data. Notably, the CatBoost and XGBoost classifiers achieved remarkable accuracy rates of 98.19% and 98.50%, respectively. Our findings offer insights into the potential of the ML and DL techniques, in conjunction with balancing algorithms such as SMOTE, to effectively identify IoT network intrusions.","PeriodicalId":38479,"journal":{"name":"Information (Switzerland)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135252049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Danila Germanese, Sara Colantonio, Marco Del Coco, Pierluigi Carcagnì, Marco Leo
{"title":"Computer Vision Tasks for Ambient Intelligence in Children’s Health","authors":"Danila Germanese, Sara Colantonio, Marco Del Coco, Pierluigi Carcagnì, Marco Leo","doi":"10.3390/info14100548","DOIUrl":"https://doi.org/10.3390/info14100548","url":null,"abstract":"Computer vision is a powerful tool for healthcare applications since it can provide objective diagnosis and assessment of pathologies, not depending on clinicians’ skills and experiences. It can also help speed-up population screening, reducing health care costs and improving the quality of service. Several works summarise applications and systems in medical imaging, whereas less work is devoted to surveying approaches for healthcare goals using ambient intelligence, i.e., observing individuals in natural settings. Even more, there is a lack of papers providing a survey of works exhaustively covering computer vision applications for children’s health, which is a particularly challenging research area considering that most existing computer vision technologies have been trained and tested only on adults. The aim of this paper is then to survey, for the first time in the literature, the papers covering children’s health-related issues by ambient intelligence methods and systems relying on computer vision.","PeriodicalId":38479,"journal":{"name":"Information (Switzerland)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134944987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ramakolote Judas Mositsa, John Andrew Van der Poll, Cyrille Dongmo
{"title":"Towards a Conceptual Framework for Data Management in Business Intelligence","authors":"Ramakolote Judas Mositsa, John Andrew Van der Poll, Cyrille Dongmo","doi":"10.3390/info14100547","DOIUrl":"https://doi.org/10.3390/info14100547","url":null,"abstract":"Business intelligence (BI) refers to technologies, tools, and practices for collecting, integrating, analyzing, and presenting large volumes of information to enable improved decision-making. A modern BI architecture typically consists of a data warehouse made up of one or more data marts that consolidate data from several operational databases. BI further incorporates a combination of analytics, data management, and reporting tools, together with associated methodologies for managing and analyzing data. An important goal of BI initiatives is to improve business decision-making for organizations to increase revenue, improve operational efficiency, and gain a competitive advantage. In this article, we analyze qualitatively various prominent business intelligence (BI) frameworks in the literature and develop a comprehensive BI framework from these. Through the technique of qualitative propositions, we identify the properties, respective advantages, and possible disadvantages of the said BI frameworks to develop a comprehensive framework aimed mainly at data management, incorporating the advantages and eliminating the disadvantages of the individual frameworks. The BI landscape is vast, so as a limitation, we note that the new framework is conceptual; hence, no implementation or any quantitative measurement is performed at this stage. That said, our work exhibits originality since it combines numerous BI frameworks into a comprehensive framework, thereby contributing to conceptual BI framework development. As part of future work, the new framework will be formally specified, followed by a practical phase, namely, conducting case studies in the industry to assist companies in their BI applications.","PeriodicalId":38479,"journal":{"name":"Information (Switzerland)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135351352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A New Social Media Analytics Method for Identifying Factors Contributing to COVID-19 Discussion Topics","authors":"Fahim Sufi","doi":"10.3390/info14100545","DOIUrl":"https://doi.org/10.3390/info14100545","url":null,"abstract":"Since the onset of the COVID-19 crisis, scholarly investigations and policy formulation have harnessed the potent capabilities of artificial intelligence (AI)-driven social media analytics. Evidence-driven policymaking has been facilitated through the proficient application of AI and natural language processing (NLP) methodologies to analyse the vast landscape of social media discussions. However, recent research works have failed to demonstrate a methodology to discern the underlying factors influencing COVID-19-related discussion topics. In this scholarly endeavour, an innovative AI- and NLP-based framework is deployed, incorporating translation, sentiment analysis, topic analysis, logistic regression, and clustering techniques to meticulously identify and elucidate the factors that are relevant to any discussion topics within the social media corpus. This pioneering methodology is rigorously tested and evaluated using a dataset comprising 152,070 COVID-19-related tweets, collected between 15th July 2021 and 20th April 2023, encompassing discourse in 58 distinct languages. The AI-driven regression analysis revealed 37 distinct observations, with 20 of them demonstrating a higher level of significance. In parallel, clustering analysis identified 15 observations, including nine of substantial relevance. These 52 AI-facilitated observations collectively unveil and delineate the factors that are intricately linked to five core discussion topics that are prevalent in the realm of COVID-19 discourse on Twitter. To the best of our knowledge, this research constitutes the inaugural effort in autonomously identifying factors associated with COVID-19 discussion topics, marking a pioneering application of AI algorithms in this domain. The implementation of this method holds the potential to significantly enhance the practice of evidence-based policymaking pertaining to matters concerning COVID-19.","PeriodicalId":38479,"journal":{"name":"Information (Switzerland)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135483294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Impact of Virtual Reality (VR) Tour Experience on Tourists’ Intention to Visit","authors":"Chourouk Ouerghemmi, Myriam Ertz, Néji Bouslama, Urvashi Tandon","doi":"10.3390/info14100546","DOIUrl":"https://doi.org/10.3390/info14100546","url":null,"abstract":"Drawing on media richness theory, this study investigates the effect of rich media, such as virtual reality (VR), on visit intentions for a specific destination. Specifically, this research employs a mixed-method approach, using abductive theorization to explore and confirm the dimensions of the VR visit experience, notably those related to telepresence, a key concept in tourism through VR. Furthermore, the study aims to elucidate how telepresence influences mental imagery, attitudes towards tourist destinations, and actual visit intentions. To do this, qualitative data were gathered between February and June 2022 from 34 semi-structured interviews with respondents who viewed a VR video of the destination. A second study collected quantitative data from 400 participants through face-to-face questionnaires after a VR video view between June and August 2022. The findings reveal that telepresence comprises three dimensions: realism of the virtual environment, immersion, and the sense of presence in the virtual environment. Telepresence, in turn, both directly and indirectly affects actual visit intentions, with mental imagery and attitude toward tourist destinations partially mediating those relationships. This study provides methodological, theoretical, and tourism management implications to enhance our comprehension of telepresence’s facets, its measurement, and the process by which VR influences real visit intentions.","PeriodicalId":38479,"journal":{"name":"Information (Switzerland)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135483307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From Radio to In-Pipe Acoustic Communication for Smart Water Networks in Urban Environments: Design Challenges and Future Trends","authors":"Markeljan Fishta, Erica Raviola, Franco Fiori","doi":"10.3390/info14100544","DOIUrl":"https://doi.org/10.3390/info14100544","url":null,"abstract":"The smart management of water resources is an increasingly important topic in today’s society. In this context, the paradigm of Smart Water Grids (SWGs) aims at a constant monitoring through a network of smart nodes deployed over the water distribution infrastructure. This facilitates a continuous assessment of water quality and the state of health of the pipeline infrastructure, enabling early detection of leaks and water contamination. Acoustic-wave-based technology has arisen as a viable communication technique among the nodes of the network. Such technology can be suitable for replacing traditional wireless networks in SWGs, as the acoustic channel is intrinsically embedded in the water supply network. However, the fluid-filled pipe is one of the most challenging media for data communication. Existing works proposing in-pipe acoustic communication systems are promising, but a comparison between the different implementations and their performance has not yet been reported. This paper reviews existing works dealing with acoustic-based communication networks in real large-scale urban water supply networks. For this purpose, an overview of the characteristics, trends and design challenges of existing works is provided in the present work as a guideline for future research.","PeriodicalId":38479,"journal":{"name":"Information (Switzerland)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135644214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Fernando Flórez Marulanda, Cesar A. Collazos, Julio Ariel Hurtado
{"title":"Evaluating an Immersive Virtual Classroom as an Augmented Reality Platform in Synchronous Remote Learning","authors":"Juan Fernando Flórez Marulanda, Cesar A. Collazos, Julio Ariel Hurtado","doi":"10.3390/info14100543","DOIUrl":"https://doi.org/10.3390/info14100543","url":null,"abstract":"Previous research has explored different models of synchronous remote learning environments supported by videoconferencing and virtual reality platforms. However, few studies have evaluated the preference and acceptance of synchronous remote learning in a course streamed in an immersive or augmented reality platform. This case study uses ANOVA analysis to examine engineering students’ preferences for receiving instruction during the COVID-19 pandemic in three classroom types: face-to-face, conventional virtual (mediated by videoconferencing) and an immersive virtual classroom (IVC). Likewise, structural equation modeling was used to analyze the acceptance of the IVC perceived by students, this includes four latent factors: ease of receiving a class, perceived usefulness, attitude towards IVC and IVC use. The findings showed that the IVC used in synchronous remote learning has a similar level of preference to the face-to-face classroom and a higher level than the conventional virtual one. Despite the high preference for receiving remote instruction in IVC, aspects such as audio delays that affect interaction still need to be resolved. On the other hand, a key aspect for a good performance of these environments is the dynamics associated with the teaching–learning processes and the instructor’ qualities.","PeriodicalId":38479,"journal":{"name":"Information (Switzerland)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135597042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}