2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)最新文献

筛选
英文 中文
Realization of a Soft Microrobot with Multiple Flexible Flagella 具有多个柔性鞭毛的柔性微型机器人的实现
Youssef Hamed, M. Tawakol, Loaa El Zahar, A. Klingner, Slim Abdennadher, I. Khalil
{"title":"Realization of a Soft Microrobot with Multiple Flexible Flagella","authors":"Youssef Hamed, M. Tawakol, Loaa El Zahar, A. Klingner, Slim Abdennadher, I. Khalil","doi":"10.1109/BIOROB.2018.8488008","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8488008","url":null,"abstract":"Ahstract- This work presents an approach to realize soft microrobots with multiple flexible flagella using beaded-fibers driven via a periodic magnetic field. Paramagnetic iron oxide particles are embedded into the polymer matrix of electrospun beaded-fibers and form magnetism upon applying an external magnetic field. We demonstrate that the induced magnetization by an external magnetic field enables self-assembly of multiple adjacent beaded-fibers to form a microrobot with multiple flexible flagella. Frequency response of the assembled microrobot and the individual beaded-fibers is characterized experimentally, and shows that the propulsive force imparted to the fluid by the multiple flexible flagella increases the actuation frequency range of the microrobot and enhances its swimming speed. At relatively high actuation frequency (20 Hz), the average speed of the individual beaded-fiber is 0.11 body-Iength-per-second, whereas the microrobot with multiple flagella swims at an average speed of 0.30 body-Iength-per-second. We also observe a slight difference in the swimming speed between the microrobot with multiple flexible flagella and its constituent beaded-fibers at relatively low actuation frequencies.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121222291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Numerical Simulations and Development of Drafting Strategies for Robotic Swimmers at Low Reynolds Number 低雷诺数下游泳机器人牵伸策略的数值模拟与发展
C. Bernier, M. Gazzola, P. Chatelain, R. Ronsse
{"title":"Numerical Simulations and Development of Drafting Strategies for Robotic Swimmers at Low Reynolds Number","authors":"C. Bernier, M. Gazzola, P. Chatelain, R. Ronsse","doi":"10.1109/BIOROB.2018.8488055","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8488055","url":null,"abstract":"The emergence and understanding of new design principles that exploit flow-induced mechanical instabilities for propulsion require robust and accurate flow-structure interaction numerical models. In this contribution, we report the development of an algorithm that combines Vortex Particles Mesh (VPM) method and Multi-Body System (MBS) solver for the simulation of actuated swimming structures in fluids. The hydrodynamic efforts are recovered through an innovative approach based on the penalization and projection steps performed within the VPM method. The resulting method avoids time consuming computation of the stresses at the wall to recover the force distribution on the surface of complex deforming shapes. This feature crucially distinguish the proposed approach from other VPM formulations and opens the door for the development of control frameworks for bio-inspired and autonomous robotic swimmers. As a first illustration towards this goal, this paper reports a swimming agent stabilizing its gait in the wake of a cylinder. Illustrating the dynamic features of our framework, we report the energy saved by swimming behind this cylinder as compared to a stationary gait in an induced flow. We also compared this result to the energy saved by following the wake of a moving cylinder.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121379508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Radar-Based Terrain Mapping Approach for Stair Detection Towards Enhanced Prosthetic Foot Control 基于雷达地形映射的楼梯检测方法增强假肢足控制
B. Kleiner, Nils Ziegenspeck, Roman Stolyarov, H. Herr, U. Schneider, A. Verl
{"title":"A Radar-Based Terrain Mapping Approach for Stair Detection Towards Enhanced Prosthetic Foot Control","authors":"B. Kleiner, Nils Ziegenspeck, Roman Stolyarov, H. Herr, U. Schneider, A. Verl","doi":"10.1109/BIOROB.2018.8487722","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487722","url":null,"abstract":"Ahstract- Current developments in ankle prosthetics are focusing on integrated actuators to fully control torques and angles. This enables terrain adaptive strategies e.g. for stairs and ramps. EMG and motion sensor input are state of the art approaches to classify different terrain or terrain changes, but these approaches have limited capabilities and detection accuracy. We present a novel approach for the detection of obstacles using a wearable Frequency-Modulated Continuous Wave (FMCW) radar integrated into a lower limb prosthetic device. With the continuous rotational motion of the tibia during the swing and stance phase, the radar scans the profile of the terrain in sagittal plane in front of the prosthesis. Gait phases are detected using a neural network classifiers based on inertial sensor data. Performance of the system is demonstrated in a single stair detection scenario.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128529958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Design and Validation of a Lightweight Adaptive and Compliant Locking Mechanism for an Ankle Prosthesis 一种用于踝关节假体的轻量级自适应柔顺锁定机构的设计与验证
Francois Heremans, B. Dehez, R. Ronsse
{"title":"Design and Validation of a Lightweight Adaptive and Compliant Locking Mechanism for an Ankle Prosthesis","authors":"Francois Heremans, B. Dehez, R. Ronsse","doi":"10.1109/BIOROB.2018.8487209","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487209","url":null,"abstract":"Over the last decade, active lower-limb prostheses demonstrated their ability to restore a physiological gait for transfemoral amputees by supplying the required positive energy balance during daily life locomotion activities. However, the added-value of such devices is significantly impacted by their limited energetic autonomy and excessive weight preventing their full appropriation by the patients. There is thus a strong incentive to reduce both the overall power consumption and weight of active prostheses. To address these issues, we developed a novel parallel spring mechanism, tailored to the dynamical behavior of an ankle prosthesis. The first contribution is the development of a lightweight and adaptive locking system, comprising an energy efficient ratchet and pawl mechanism with electromagnetical actuation. As second contribution, the required compliance is directly materialized within the structure of the prosthesis with no additional parts, taking advantage of fused filament fabrication (FDM) technology with carbon fibers reinforcement. Our system provides an elastic torque during flat ground walking, corresponding to 41% of the peak torque produced by an healthy ankle (50 Nm), at a negligible energetic cost (0.5 J/stride). By design, the novel parallel spring mechanism is lightweight (140 g), can engage at any plantarflexion position with a locking discretization of 0.3°, and is self-unlocking.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"496 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129244903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Alteration in Foot Strike Pattern While Running with Elastic Insoles: Case Study on the Effects of Long-term Training 穿弹性鞋垫跑步时足部打击模式的改变:长期训练影响的个案研究
R. Fujihara, Kohei Kozasa, Hiroaki Hirai, H. Krebs
{"title":"Alteration in Foot Strike Pattern While Running with Elastic Insoles: Case Study on the Effects of Long-term Training","authors":"R. Fujihara, Kohei Kozasa, Hiroaki Hirai, H. Krebs","doi":"10.1109/BIOROB.2018.8487182","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487182","url":null,"abstract":"Motor adaptation is a form of motor learning that involves changes in the control of movements that occur as a consequence of optimization in repeated task exposure or practice. A good example of this can be found in human running. It is thought that humans run in accordance with the presence or absence and shape of shoes. Three foot strike patterns exist in running, classified according to which portion of the sole first connects with the ground: RFS (rear-foot-strike; heel connection), MFS (mid-foot-strike, simultaneous heel and toe connections), and FFS (fore-foot-strike; toe, or ball connection). RFS is often seen in runners wearing shoes, whereas FFS is commonly seen during routine barefoot running. This study examined how humans adapt to assistive footwear (environmental exposure)s throughout approximately one month of running training. We found that the shape and stiffness of a modified insole affected the foot, functioning as a spring during running. As training continued, the subject adapted to the structure of the footwear by altering his foot strike pattern while reducing his heart rate. The foot strike pattern changed from heel contact to contact from the side of the toe or arch, and the pattern of the ground reaction force changed from that of RFS to that of FFS or MFS. These results indicate that the change in foot compliance while landing and during grounding affects the foot strike pattern to improve the efficiency and capability of running through long-term training.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127082201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Attitude Control for Underactuated Hopping Robots Using Nonlinear Output Zeroing Controller 欠驱动跳跃机器人的非线性归零姿态控制
Yurika Nomura, J. Ishikawa
{"title":"Attitude Control for Underactuated Hopping Robots Using Nonlinear Output Zeroing Controller","authors":"Yurika Nomura, J. Ishikawa","doi":"10.1109/BIOROB.2018.8487770","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487770","url":null,"abstract":"This paper proposes a nonlinear control of aerial attitude regulation for hopping robots that have a freely-rotating body with a pair of actuated arms that are connected to each other. These kinds of robots are so-called underactuated robots. The proposed controller is based on an output zeroing control that stabilizes angular momentum and the body pitch angle to be zero. Compared with attitude stabilizing methods using axisymmetric reaction wheels driven by a linear control law, utilizing arms for attitude compensation, which is not axisymmetric, will achieves more natural motions like animals. As the first stage of the development, a controller has been designed for an underactuated inverted pendulum model, where the robot body is supported a freely-rotating joint and the arms is actuated by a motor. The control law is simplified based on simulation analysis so as to be implemented to low-cost microcomputers. To show the validity of the proposed method, an inverted-pendulum-type robot with a pair of arms driven by an inexpensive hobby-use motor has been prototyped, the attitude of which is measured by using a 9-axis motion sensor, and the control law has been implemented to a microcomputer, Renesas RX63N (GR-SAKURA II). Experiments to control the pitch angle of the robot has been conducted, and the experimental results showed that the proposed method well works to stabilize the amplitude of the pitch angle to be less than about ±13 degrees.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128059662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Optimisation of Exoskeleton Design Parameters 外骨骼设计参数的贝叶斯优化
Daniel F. N. Gordon, Takamitsu Matsubara, T. Noda, T. Teramae, J. Morimoto, S. Vijayakumar
{"title":"Bayesian Optimisation of Exoskeleton Design Parameters","authors":"Daniel F. N. Gordon, Takamitsu Matsubara, T. Noda, T. Teramae, J. Morimoto, S. Vijayakumar","doi":"10.1109/BIOROB.2018.8487720","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487720","url":null,"abstract":"Exoskeletons are currently being developed and used as effective tools for rehabilitation. The ideal location and design of exoskeleton attachment points can vary due to factors such as the physical dimensions of the wearer, which muscles or joints are targeted for rehabilitation or assistance, or the presence of joint misalignment between the human subject and exoskeleton device. In this paper, we propose an approach for identifying the ideal exoskeleton cuff locations based on a human-in-the-Ioop optimisation process, and present an empirical validation of our method. The muscle activity of a subject was measured while walking with assistance from the XoR exoskeleton (ATR, Japan) over a range of cuff configurations. A Bayesian optimisation process was implemented and tested to identify the optimal configuration of the XoR cuffs which minimised the measured EMG activity. Using this process, the optimal design parameters for the XoR were identified more efficiently than via linear search.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125757419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
On the Electrical Energy Consumption of Active Ankle Prostheses with Series and Parallel Elastic Elements 基于串联和并联弹性元件的主动踝关节假体的电能消耗研究
T. Verstraten, L. Flynn, J. Geeroms, B. Vanderborght, D. Lefeber
{"title":"On the Electrical Energy Consumption of Active Ankle Prostheses with Series and Parallel Elastic Elements","authors":"T. Verstraten, L. Flynn, J. Geeroms, B. Vanderborght, D. Lefeber","doi":"10.1109/BIOROB.2018.8487656","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487656","url":null,"abstract":"With series and parallel elastic elements, considerable reductions in the mechanical peak power and energy consumption of active ankle prostheses can be obtained. Very few works, however, evaluate the electrical energy consumption of these devices. In this work, we analyze and discuss the differences between the mechanical and electrical energy consumption of these actuators. Design optimizations based on mechanical and electrical energy consumption are compared for a series elastic actuator, parallel elastic actuator and series elastic actuator with unidirectional spring. The results are then analyzed by means of torque-angle plots, power flow graphs and motor efficiency maps. The analysis highlights the impact of drivetrain inertia on the peak power and energy efficiency of the system. Moreover, interaction between the series spring and unidirectional parallel spring is identified as a potential cause of reduced actuator bandwidth. A parallel elastic actuator is found to be the most compact and energy-efficient solution overall as it makes the most efficient use of the electric motor.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124884304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Exploring Arm Posture and Temporal Variability in Myoelectric Hand Gesture Recognition 肌电手势识别中手臂姿势和时间变异性的研究
B. Milosevic, Elisabetta Farella, Simone Benaui
{"title":"Exploring Arm Posture and Temporal Variability in Myoelectric Hand Gesture Recognition","authors":"B. Milosevic, Elisabetta Farella, Simone Benaui","doi":"10.1109/BIOROB.2018.8487838","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487838","url":null,"abstract":"Hand gesture recognition based on myoelectric (EMG) signals is an innovative approach for the development of intuitive interaction devices, ranging from poliarticulated prosthetic hands to intuitive robot and mobile interfaces. Their study and development in controlled environments provides promising results, but effective real-world adoption is still limited due to reliability problems, such as motion artifacts and arm posture, temporal variability and issues caused by the re-positioning of sensors at each use. In this work, we present an EMG dataset collected with the aim to explore postural and temporal variability in the recognition of arm gestures. Its collection of gestures executed in 4 arm postures over 8 days allows to evaluate the impact of such variability on classification performance. We implemented and tested State-of-the-Art (SoA) recognition approaches analyzing the impact of different training strategies. Moreover, we compared the computational and memory requirements of the considered algorithms, providing an additional evaluation criteria useful for real-time implementation. Results show a decrease in the recognition of inter-posture and inter-day gestures up to 20%. The provided dataset will allow further exploration of such effects and the development of effective training and recognition strategies.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"274 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124423869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 31
Performance-Based Adaptive Assistance for Diverse Subtasks of Walking in a Robotic Gait Trainer: Description of a New Controller and Preliminary Results 基于性能的自适应辅助机器人步态训练器中不同子任务的行走:一种新控制器的描述和初步结果
C. Bayón, S. S. Fricke, Eduardo Rocon, H. Kooij, E. V. Asseldonk
{"title":"Performance-Based Adaptive Assistance for Diverse Subtasks of Walking in a Robotic Gait Trainer: Description of a New Controller and Preliminary Results","authors":"C. Bayón, S. S. Fricke, Eduardo Rocon, H. Kooij, E. V. Asseldonk","doi":"10.1109/BIOROB.2018.8487189","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487189","url":null,"abstract":"Robotic gait training is a promising tool for gait rehabilitation in people with neurological disorders. Including intuitive assessment and automatic adaptation of robotic assistance into robotic training is expected to further improve therapy outcomes. This contribution presents a novel performance-based adaptive controller, which adjusts robotic assistance based on the user's performance for diverse subtasks of gait. The resulting assistance profile of the algorithm could serve as an assessment tool or be used for monitoring progress during therapy. However, during training, values of gait speed and/or partial body weight support (PBWS) might vary. Therefore, the performance criteria should not depend on these factors to result in a reliable assessment. As a first step in deriving the potential of the controller as an assessment tool, ten healthy participants walked in the LOPES II robotic gait trainer testing the adaptive assistance at various gait speeds and levels of PBWS. Performances for all subtasks were dependent on the amount of PBWS. Therefore, the outcome of the novel control algorithm cannot directly be used as an assessment tool, but it has potential to be used for monitoring the progress of patients when the amount of PBWS and the speed are kept constant. Future studies will be focused on further testing the controller on people with neurological disorders to determine its potential as a monitoring tool.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122697817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信