Journal of Machine Engineering最新文献

筛选
英文 中文
Simplification of the rolling contact-related lifetime calculation of profiled rail guides with a polynomial regression 利用多项式回归简化与滚动接触相关的异型导轨寿命计算
Journal of Machine Engineering Pub Date : 2024-03-19 DOI: 10.36897/jme/186130
Danny Staroszyk, Müller Jens, Ihlenfeldt Steffen
{"title":"Simplification of the rolling contact-related lifetime calculation of profiled rail guides with a polynomial regression","authors":"Danny Staroszyk, Müller Jens, Ihlenfeldt Steffen","doi":"10.36897/jme/186130","DOIUrl":"https://doi.org/10.36897/jme/186130","url":null,"abstract":"The calculation of the lifespan of profile rail guides is an essential part in the design process of machines. Conventional lifespan models yield good results when calculating lifespan values under a homogeneous distribution of individual rolling contact forces on the raceways. In the case of an uneven load distribution, significantly too low lifespan values are calculated, resulting in a considerable loss of lifetime potential. The novel and experimentally validated rolling contact-based lifespan calculation (RCBL) takes the transferred force on each rolling element into account, resulting in more realistic lifespan values that can be up to 4 times higher than those obtained through the classical method. The disadvantage lies in the complex calculation of the necessary individual rolling contact forces, which until now has been done by using extensive finite element models, along with the computationally intensive optimization problem of the RCBL. To overcome these disadvantages, a method is introduced that efficiently calculates the individual rolling contact forces, taking into account all relevant system elasticities, and pre-solves the RCBL for a variety of potential superimposed load combinations. The results are subsequently approximated through an analytical multiparametric polynomial function and can be utilized with the conventional lifespan formula for rolling bearings.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":"55 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140228801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Open-Loop Control System for High Precision Extrusion-Based Bioprinting Through Machine Learning Modeling 通过机器学习建模实现基于挤压的高精度生物打印开环控制系统
Journal of Machine Engineering Pub Date : 2024-03-19 DOI: 10.36897/jme/186044
Javier Arduengo, Nicolas Hascoet, Francisco Chinesta, J. Hascoet
{"title":"Open-Loop Control System for High Precision Extrusion-Based Bioprinting Through Machine Learning Modeling","authors":"Javier Arduengo, Nicolas Hascoet, Francisco Chinesta, J. Hascoet","doi":"10.36897/jme/186044","DOIUrl":"https://doi.org/10.36897/jme/186044","url":null,"abstract":"Bioprinting is a process that uses 3D printing techniques to combine cells, growth factors, and biomaterials to create biomedical components, often with the aim of imitating natural tissue characteristics. Typically, 3D bioprinting adopts a layer-by-layer method, using materials known as bio-inks to build structures resembling tissues. This study introduces an open-loop control system designed to improve the accuracy of extrusion-based bioprinting techniques, which is composed of a specific experimental setup and a series of algorithms and models. Firstly, a method employing Logistic Regression is used to select the tests that will serve to train and test the following model. Then, using a Machine Learning Algorithm, a model that allows the optimization of printing parameters and enables process control through an open-loop system was developed. Through rigorous experimentation and validation, it is shown that the model exhibits a high degree of accuracy in independent tests. Thus, the control system offers predictability and adaptability capabilities to ensure the consistent production of high-quality bioprinted structures. Experimental results confirm the efficacy of this machine learning model and the open-loop control system in achieving optimal bioprinting outcomes.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":"4 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140228979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative Evaluation on Dynamics of Fixturing System 夹具系统动态定量评估
Journal of Machine Engineering Pub Date : 2024-03-13 DOI: 10.36897/jme/185894
Raiki Numata, Kotaro Mori, Atsushi Matsubara
{"title":"Quantitative Evaluation on Dynamics of Fixturing System","authors":"Raiki Numata, Kotaro Mori, Atsushi Matsubara","doi":"10.36897/jme/185894","DOIUrl":"https://doi.org/10.36897/jme/185894","url":null,"abstract":"When complex and thin-walled workpieces produced for the aircraft industry are machined, they are supported by fixtures to prevent them from easily deforming or vibrating. To support the workpieces effectively, the stiffness of the fixture should be sufficiently high. However, the criteria required for the fixture dynamics to effectively support a workpiece during machining have not been thoroughly investigated. To minimize trial and error, the design parameters required for the fixture should be determined theoretically. Accordingly, this study proposes a method for theoretically determining the design parameters of a fixturing system. The effect of the substructure thickness on the dynamics of the entire structure was evaluated quantitatively using a theoretical model, and the validity of the model was verified experimentally. The stiffness of the entire fixturing system was estimated using the reacceptance coupling method. In addition, the relationship between the thickness of the substructure and stiffness of the entire structure was evaluated.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140245133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Circulating Abrasive Flow Strategy Using Circular Halbach Array for Magneto-Rheological Finishing of Ti-6Al-4V 使用环形哈尔巴赫阵列的新型循环磨料流策略用于 Ti-6Al-4V 的磁流变精加工
Journal of Machine Engineering Pub Date : 2024-03-13 DOI: 10.36897/jme/185893
Nguyen Duy Trinh, D. Hoang Tien, P. T. K. Thoa, Nguyen Van Que, Kieu Van Quang, Nguyen Trong Mai, Nguyen Ngoc Quan, Ngo Minh Nhat
{"title":"A Novel Circulating Abrasive Flow Strategy Using Circular Halbach Array for Magneto-Rheological Finishing of Ti-6Al-4V","authors":"Nguyen Duy Trinh, D. Hoang Tien, P. T. K. Thoa, Nguyen Van Que, Kieu Van Quang, Nguyen Trong Mai, Nguyen Ngoc Quan, Ngo Minh Nhat","doi":"10.36897/jme/185893","DOIUrl":"https://doi.org/10.36897/jme/185893","url":null,"abstract":"","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140247947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of One-Dimensional Inelastic Deformation of the Clad Layer by Rolling for Restoration of Flat Surface Parts 用于修复平面部件的轧制包层一维非弹性变形分析
Journal of Machine Engineering Pub Date : 2024-03-12 DOI: 10.36897/jme/185475
Huy Pham, Gulmira Zhaibergenovna Bulekbayeva, A. Tabylov, Amina Zakharovna Bukayeva, Nabat Suieuova, A. Yusupov, G. Bilashova, G. Mambetaliyeva
{"title":"Analysis of One-Dimensional Inelastic Deformation of the Clad Layer by Rolling for Restoration of Flat Surface Parts","authors":"Huy Pham, Gulmira Zhaibergenovna Bulekbayeva, A. Tabylov, Amina Zakharovna Bukayeva, Nabat Suieuova, A. Yusupov, G. Bilashova, G. Mambetaliyeva","doi":"10.36897/jme/185475","DOIUrl":"https://doi.org/10.36897/jme/185475","url":null,"abstract":"The hardening-finishing treatment of parts surface with rolling by steel cylindrical rollers produces low roughness, reduced residual compression stresses, and fine-grained structure due to plastic deformations. The deformation of metals during machining at high temperatures is characterized by a significant influence of strain rates on stresses. This necessitates the calculation of stresses and strains based on the equation of state of rheonic bodies. This study aims to determine the components of stresses and force factors of the technological process of finishing and strengthening machining of the surface of parts by deriving the analytical solutions to calculate the stress-strain state within the deformation zone based on creep theory. In this problem, general formulas are obtained for calculating the stress-strain state, pressure and friction forces on the contact surface, as well as forces and moments acting on the roller. Numerical analysis using Mathcad explores the understanding of the stress-strain state in the deformation zone on the force factors of the technological process. The obtained results are beneficial for establishing the mode of thermomechanical processing and selecting appropriate technological equipment for restoring flat surface parts.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":"90 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140249619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization and Modelling of Fracture Height in SECC Cylindrical Cup Deep Drawing Processes SECC 圆柱杯深拉工艺中断裂高度的优化与建模
Journal of Machine Engineering Pub Date : 2024-03-10 DOI: 10.36897/jme/185476
Quy-Huy Trieu, The-Thanh Luyen, Duc-Toan Nguyen
{"title":"Optimization and Modelling of Fracture Height in SECC Cylindrical Cup Deep Drawing Processes","authors":"Quy-Huy Trieu, The-Thanh Luyen, Duc-Toan Nguyen","doi":"10.36897/jme/185476","DOIUrl":"https://doi.org/10.36897/jme/185476","url":null,"abstract":"Deep drawing processes play a pivotal role in the manufacturing of sheet and shell products, making it a widely adopted method. This research employs numerical simulations to investigate the impact of various process parameters on the fracture height of cylindrical cups made from SECC (Steel Electrogalvanized Commercial Cold rolled) material. Specifically, it examines parameters such as blank holder force (BHF), punch corner radius (Rp), die corner radius (Rd), and punch-die clearance (Wc). The study extends to optimizing fracture height, offering a solution to this challenge. Subsequently, the selected parameters are validated through experimental deep drawing of cylindrical cups, resulting in a minimal deviation of 1.55% between simulation and experiment outcomes. A precise mathematical equation is developed to estimate fracture height under diverse machining conditions, with a maximum deviation of 4.52% observed between the mathematical model and simulation. These findings represent a substantial advancement in deep drawing processes technology, particularly in reducing error rates during the production of cylindrical cups .","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":"40 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140254920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of FEM thermal simulation technology for machine tool with enclosures and application 机床外壳有限元热模拟技术的开发与应用
Journal of Machine Engineering Pub Date : 2023-12-28 DOI: 10.36897/jme/176716
I. Tanabe, Naohiko Suzuki, Yoshiaki Ishino, Hiromi Isobe
{"title":"Development of FEM thermal simulation technology for machine tool with enclosures and application","authors":"I. Tanabe, Naohiko Suzuki, Yoshiaki Ishino, Hiromi Isobe","doi":"10.36897/jme/176716","DOIUrl":"https://doi.org/10.36897/jme/176716","url":null,"abstract":"These days, most machine tools are interlocked by an enclosure for safety control. At that time, internal heat generation in machine tools first causes thermal deformation of the machine structure, which reduces the machining accuracy of the workpiece. Furthermore, the internal heat generation heats the air inside the enclosure, causing a heat build-up phenomenon, and the trapped heat causes re-thermal deformation of the machine tool structure. As a result, machine tools with enclosures are subject to extremely complex thermal deformation. On the other hand, we would like to use FEM thermal simulation to study thermal deformation countermeasures for machine tools with enclosures at the design stage, but it is difficult to analyse the heat build-up phenomenon using conventional FEM thermal simulation. In this research, the new FEM thermal simulation technology for the heat build-up phenomenon was developed and heat build-up phenomenon in a CNC lathe with enclosure was calculated using the proposed FEM simulation technology. As a result, it had been concluded that the proposed FEM simulation could calculate with high accuracy for the phenomenon of heat build-up in a CNC lathe with enclosure, and the proposed technology is very effective in the design.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":"1 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139152147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a Cutting Fluid with Abrasive for Increasing a Tools Life During Milling 开发含磨料的切削液,提高铣削过程中刀具的使用寿命
Journal of Machine Engineering Pub Date : 2023-11-21 DOI: 10.36897/jme/175130
I. Tanabe, Hiromi Isobe
{"title":"Development of a Cutting Fluid with Abrasive for Increasing a Tools Life During Milling","authors":"I. Tanabe, Hiromi Isobe","doi":"10.36897/jme/175130","DOIUrl":"https://doi.org/10.36897/jme/175130","url":null,"abstract":"In wet cutting, lubricants are used to improve lubrication, forced cooling and chip evacuation. In particular, improving the lubrication between the tool and the chip results in a lower coefficient of friction, suppressing the tool temperature change and improving the cutting properties. For this reason, tools coated with DLC (Diamond Like Carbon) or diamond have been developed to further reduce the coefficient of friction. However, the tool life is still not sufficiently long. Therefore, in this study, a cutting fluid for polishing tools during cutting was developed and evaluated. First, using the author's previous research, the function, effect and influence of several cutting fluids on milling were identified. Secondly, a new criterion for determining tool life was defined and, based on this criterion, a cutting fluid was proposed to polish the tool during the cutting process. Next, the machining conditions under which the proposed cutting fluid would be effective were identified. Finally, the cutting properties of the proposed cutting fluid were evaluated. The results showed that (1) the cutting fluid was developed to polish the tool during the cutting process and the optimum machining conditions were clarified, (2) the proposed cutting fluid was very effective in increasing the tool life.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139253496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Handling Ambient Temperature Changes in Correlative Thermal Error Compensation 在相关热误差补偿中处理环境温度变化
Journal of Machine Engineering Pub Date : 2023-11-20 DOI: 10.36897/jme/175397
C. Naumann, Geist Alexander, Matthias Putz
{"title":"Handling Ambient Temperature Changes in Correlative Thermal Error Compensation","authors":"C. Naumann, Geist Alexander, Matthias Putz","doi":"10.36897/jme/175397","DOIUrl":"https://doi.org/10.36897/jme/175397","url":null,"abstract":"Thermal errors are one of the leading causes for positioning inaccuracies in modern machine tools. These errors are caused by various internal and external heat sources and sinks, which shape the machine tool’s temperature field and thus its deformation. Model based thermal error prediction and compensation is one way to reduce these inaccuracies. A new composite correlative model for the compensation of both internal and external thermal effects is presented. The composite model comprises a submodel for slow long-and medium-term ambient changes, one for short-term ambient changes and one for all internal thermal influences. A number of model assumptions are made to allow for this separation of thermal effects. The model was trained using a large number of FE simulations and validated online in a five-axis machine tool with measurements in a climate chamber. Despite the limitations, the compensation model achieved good predictions of the thermal error for both normal ambient conditions (21°C) and extreme ambient conditions (35°C).","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139259611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approach of Model Extension for Virtual Commissioning to Predict Energy Consumption of Production Systems 生产系统能耗预测的虚拟调试模型扩展方法
Journal of Machine Engineering Pub Date : 2023-11-09 DOI: 10.36897/jme/174867
Leon Hollas, Christer-Clifford Schenke, Arvid Hellmich
{"title":"Approach of Model Extension for Virtual Commissioning to Predict Energy Consumption of Production Systems","authors":"Leon Hollas, Christer-Clifford Schenke, Arvid Hellmich","doi":"10.36897/jme/174867","DOIUrl":"https://doi.org/10.36897/jme/174867","url":null,"abstract":"1. GANGL K., et al., 2022, Policy Brief: Energiekrise – was tun?, Institut für Höhere Studien, Vienna. Google Scholar","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":" 50","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135241036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信