S. Maidin, S. Y. Chong, Ting Kung Heing, Z. Abdullah, Rizal Alkahari
{"title":"Stab Resistant Analysis of Body Armour Design Features Manufactured via Fused Deposition Modelling Process","authors":"S. Maidin, S. Y. Chong, Ting Kung Heing, Z. Abdullah, Rizal Alkahari","doi":"10.5772/INTECHOPEN.86439","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.86439","url":null,"abstract":"Five designs of imbricate scale armour features for stab-resistant applica-tion were printed via fused deposition modelling process. Stab test on these designs against the HOSDB KR1-E1 stab-resistant body armour standard with impact energy of 24 Joules was conducted. The stab test was conducted on a number of samples measured thicknesses ranging from 4.0 to 10.0 mm by using Instron CEAST 9340 Drop Impact Tower to determine a minimum thickness that resulted in a knife penetration through the underside of sample which does not exceed the maximum penetration permissibility of 7.0 mm. Materials used for the samples were ABS-M30 and PC-ABS. Finally, one of the designs which offered the highest knife penetration resistance was selected. The results show that PC-ABS samples provide less shattering and lower overall knife penetration depth in comparison with ABS-M30. PC-ABS stab test demonstrated a minimum thickness of 8.0 mm, which was the most adequate to be used in the develop-ment of FDM manufactured body armour design features. Lastly, the design feature of D5 has shown to exhibit the highest resistance to the knife penetration due to the penetration depth of 3.02 mm, which was the lowest compared to other design features.","PeriodicalId":377625,"journal":{"name":"Textile Manufacturing Processes","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134448345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Innovation in the Comfort of Intimate Apparel","authors":"S. Duru, C. Candan, B. Nergis","doi":"10.5772/INTECHOPEN.87115","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.87115","url":null,"abstract":"Intimate apparel is the most important clothing layer since it acts as human’s second skin due to contact with the skin directly. The comfort issues for intimate apparels are sensorial, thermal, motion, and aesthetical, all of which are interrelated. Since intimate apparel is an inner layer in between the skin and the outerwear, its thermal comfort is very important. Transferring moisture from the clothing to the environment through diffusion, wicking, sorption, and evaporation is regulated by the thickness and tightness of the fabric. On the other part, the behavior of fabric is affected by chemical and physical properties of its constituent fibers, fiber content, physical and mechanical characteristics of its constituent yarns, and the finishing treatments. Thus, major fiber manufacturers such as Nylstar, Invista, and Lenzing have launched different types of fibers such as Meryl Skinlife, Tactel, Tencel, etc., which are suitable for intimate apparel. The aim of this chapter is to introduce the latest developments in fibers used in the manufacturing of intimate apparel products and their contribution to clothing comfort, which the apparels give when the body does not limit its movement and regulation mechanism of its own temperature.","PeriodicalId":377625,"journal":{"name":"Textile Manufacturing Processes","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131597576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulations of Yarn Unwinding from Packages","authors":"S. Praček, Nace Pušnik","doi":"10.5772/INTECHOPEN.86767","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.86767","url":null,"abstract":"Yarn unwinding from stationary packages has an important role in many textile processes. In order to achieve high unwinding velocity that can lead to increased production rate, it is necessary to develop packages with a suitable geometry, dimensions, and winding type. The optimal design of the package leads to an optimal form of the balloon and low and uniform tension at high unwinding speed. In this work I will show a simple mathematical model which can be used for simulating the unwinding process. Using experimental values I will find a relation between the angular velocity of the yarn around the axis and the tension. This will allow me to calculate the oscillations of the tension in the yarn during the unwinding from packages of different geometries and with different winding angles. I will find an optimal design for a package of a new generation.","PeriodicalId":377625,"journal":{"name":"Textile Manufacturing Processes","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121470736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Seam Performance of Garments","authors":"A. Gurarda","doi":"10.5772/INTECHOPEN.86436","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.86436","url":null,"abstract":"Seams are basic requirements in the manufacturing of garments. In general, seam performance has a great influence on the garment quality. Seam and stitch types affect the quality and appearance of garments. Seams of the garment must be durable and smooth. Stitch and seam types and stitch and seam parameters should be selected according to the garment and fabric type. Appearance and performance of the seams are dependent upon the stitch and seam types, stitch and seam parameters, seam defects and damages. Seam performance of a garment also depends on structural and mechanical properties of the fabric and strength, extensibility, security, durability, appearance and efficiency of the seams. In this study, the importance of the seam performance of garments is investigated. In this context, stitch and seam types used in garments are explained. However, the stitch and seam parameters, sewing needle penetration force, needle damage index, seam defects and damages that are effective at seam performance have been explained and their relations with each other are compared.","PeriodicalId":377625,"journal":{"name":"Textile Manufacturing Processes","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124243979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}