S. Maidin, S. Y. Chong, Ting Kung Heing, Z. Abdullah, Rizal Alkahari
{"title":"熔融沉积建模制造的防弹衣设计特征的抗刺性分析","authors":"S. Maidin, S. Y. Chong, Ting Kung Heing, Z. Abdullah, Rizal Alkahari","doi":"10.5772/INTECHOPEN.86439","DOIUrl":null,"url":null,"abstract":"Five designs of imbricate scale armour features for stab-resistant applica-tion were printed via fused deposition modelling process. Stab test on these designs against the HOSDB KR1-E1 stab-resistant body armour standard with impact energy of 24 Joules was conducted. The stab test was conducted on a number of samples measured thicknesses ranging from 4.0 to 10.0 mm by using Instron CEAST 9340 Drop Impact Tower to determine a minimum thickness that resulted in a knife penetration through the underside of sample which does not exceed the maximum penetration permissibility of 7.0 mm. Materials used for the samples were ABS-M30 and PC-ABS. Finally, one of the designs which offered the highest knife penetration resistance was selected. The results show that PC-ABS samples provide less shattering and lower overall knife penetration depth in comparison with ABS-M30. PC-ABS stab test demonstrated a minimum thickness of 8.0 mm, which was the most adequate to be used in the develop-ment of FDM manufactured body armour design features. Lastly, the design feature of D5 has shown to exhibit the highest resistance to the knife penetration due to the penetration depth of 3.02 mm, which was the lowest compared to other design features.","PeriodicalId":377625,"journal":{"name":"Textile Manufacturing Processes","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Stab Resistant Analysis of Body Armour Design Features Manufactured via Fused Deposition Modelling Process\",\"authors\":\"S. Maidin, S. Y. Chong, Ting Kung Heing, Z. Abdullah, Rizal Alkahari\",\"doi\":\"10.5772/INTECHOPEN.86439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Five designs of imbricate scale armour features for stab-resistant applica-tion were printed via fused deposition modelling process. Stab test on these designs against the HOSDB KR1-E1 stab-resistant body armour standard with impact energy of 24 Joules was conducted. The stab test was conducted on a number of samples measured thicknesses ranging from 4.0 to 10.0 mm by using Instron CEAST 9340 Drop Impact Tower to determine a minimum thickness that resulted in a knife penetration through the underside of sample which does not exceed the maximum penetration permissibility of 7.0 mm. Materials used for the samples were ABS-M30 and PC-ABS. Finally, one of the designs which offered the highest knife penetration resistance was selected. The results show that PC-ABS samples provide less shattering and lower overall knife penetration depth in comparison with ABS-M30. PC-ABS stab test demonstrated a minimum thickness of 8.0 mm, which was the most adequate to be used in the develop-ment of FDM manufactured body armour design features. Lastly, the design feature of D5 has shown to exhibit the highest resistance to the knife penetration due to the penetration depth of 3.02 mm, which was the lowest compared to other design features.\",\"PeriodicalId\":377625,\"journal\":{\"name\":\"Textile Manufacturing Processes\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Textile Manufacturing Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.86439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Textile Manufacturing Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.86439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stab Resistant Analysis of Body Armour Design Features Manufactured via Fused Deposition Modelling Process
Five designs of imbricate scale armour features for stab-resistant applica-tion were printed via fused deposition modelling process. Stab test on these designs against the HOSDB KR1-E1 stab-resistant body armour standard with impact energy of 24 Joules was conducted. The stab test was conducted on a number of samples measured thicknesses ranging from 4.0 to 10.0 mm by using Instron CEAST 9340 Drop Impact Tower to determine a minimum thickness that resulted in a knife penetration through the underside of sample which does not exceed the maximum penetration permissibility of 7.0 mm. Materials used for the samples were ABS-M30 and PC-ABS. Finally, one of the designs which offered the highest knife penetration resistance was selected. The results show that PC-ABS samples provide less shattering and lower overall knife penetration depth in comparison with ABS-M30. PC-ABS stab test demonstrated a minimum thickness of 8.0 mm, which was the most adequate to be used in the develop-ment of FDM manufactured body armour design features. Lastly, the design feature of D5 has shown to exhibit the highest resistance to the knife penetration due to the penetration depth of 3.02 mm, which was the lowest compared to other design features.