Computational Toxicology最新文献

筛选
英文 中文
Using Read-Across to build Physiologically-Based Kinetic models: Part 2. Case studies for atenolol and flumioxazin 利用 "交叉阅读 "建立基于生理学的动力学模型:第二部分。阿替洛尔和氟米恶嗪的案例研究
Computational Toxicology Pub Date : 2023-12-09 DOI: 10.1016/j.comtox.2023.100293
Courtney V. Thompson , Steven D. Webb , Joseph A. Leedale , Peter E. Penson , Alicia Paini , David Ebbrell , Judith C Madden
{"title":"Using Read-Across to build Physiologically-Based Kinetic models: Part 2. Case studies for atenolol and flumioxazin","authors":"Courtney V. Thompson ,&nbsp;Steven D. Webb ,&nbsp;Joseph A. Leedale ,&nbsp;Peter E. Penson ,&nbsp;Alicia Paini ,&nbsp;David Ebbrell ,&nbsp;Judith C Madden","doi":"10.1016/j.comtox.2023.100293","DOIUrl":"10.1016/j.comtox.2023.100293","url":null,"abstract":"<div><p>Read-across, wherein information from a data-rich chemical is used to make a prediction for a similar chemical that lacks the relevant data, is increasingly being accepted as an alternative to animal testing. Identifying chemicals that can be considered as similar (analogues) is crucial to the process. Two resources have been developed previously to address the issue of analogue selection and facilitate physiologically-based kinetic (PBK) model development, using read-across. Chemical-specific PBK models, available in the literature, were collated to form a PBK model dataset (PMD) of over 7,500 models. A KNIME workflow was created to accompany this PMD that can aid the selection of appropriate chemical analogues from chemicals within this dataset (i.e. chemicals that are similar to a target of interest and are known to have an existing PBK model). Information from the PBK model for the source chemical can then be used in a read-across approach to inform the development of a new PBK model for the target. The application of these resources is tested here using two case studies (i) for the drug atenolol and (ii) for the plant protection product, flumioxazin. New PBK models were constructed for these two target chemicals using data obtained from source chemicals, identified by the workflow as being similar (analogues). In each case, the published PBK model for the source chemical was initially reproduced, as accurately as possible, before being adapted and used as a template for the target chemical. The performance of the new PBK models was assessed by comparing simulation outputs to existing data on key kinetic properties for the targets. The results demonstrate that a read-across approach can be successfully applied to develop new PBK models for data-poor chemicals, thus enabling their deployment during early-stage risk assessment. This assists prediction of internal exposure whilst reducing reliance on animal testing.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468111323000348/pdfft?md5=6b457a68b48b91543a4c7e296decc964&pid=1-s2.0-S2468111323000348-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138621917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guided optimization of ToxPi model weights using a Semi-Automated approach 利用半自动方法指导优化 ToxPi 模型权重
Computational Toxicology Pub Date : 2023-12-09 DOI: 10.1016/j.comtox.2023.100294
Jonathon F. Fleming , John S. House , Jessie R. Chappel , Alison A. Motsinger-Reif , David M. Reif
{"title":"Guided optimization of ToxPi model weights using a Semi-Automated approach","authors":"Jonathon F. Fleming ,&nbsp;John S. House ,&nbsp;Jessie R. Chappel ,&nbsp;Alison A. Motsinger-Reif ,&nbsp;David M. Reif","doi":"10.1016/j.comtox.2023.100294","DOIUrl":"10.1016/j.comtox.2023.100294","url":null,"abstract":"<div><p>The Toxicological Prioritization Index (ToxPi) is a visual analysis and decision support tool for dimension reduction and visualization of high throughput, multi-dimensional feature data. ToxPi was originally developed for assessing the relative toxicity of multiple chemicals or stressors by synthesizing complex toxicological data to provide a single comprehensive view of the potential health effects. It continues to be used for profiling chemicals and has since been applied to other types of “sample” entities, including geospatial (e.g. county-level Covid-19 risk and sites of historical PFAS exposure) and other profiling applications. For any set of features (data collected on a set of sample entities), ToxPi integrates the data into a set of weighted slices that provide a visual profile and a score metric for comparison. This scoring system is highly dependent on user-provided feature weights, yet users often lack knowledge of how to define these feature weights. Common methods for predicting feature weights are generally unusable due to inappropriate statistical assumptions and lack of global distributional expectation. However, users often have an inherent understanding of expected results for a small subset of samples. For example, in chemical toxicity, prior knowledge can often place subsets of chemicals into categories of low, moderate or high toxicity (reference chemicals). Ordinal regression can be used to predict weights based on these response levels that are applicable to the entire feature set, analogous to using positive and negative controls to contextualize an empirical distribution. We propose a semi-supervised method utilizing ordinal regression to predict a set of feature weights that produces the best fit for the known response (“reference”) data and subsequently fine-tunes the weights via a customized genetic algorithm. We conduct a simulation study to show when this method can improve the results of ordinal regression, allowing for accurate feature weight prediction and sample ranking in scenarios with minimal response data. To ground-truth the guided weight optimization, we test this method on published data to build a ToxPi model for comparison against expert-knowledge-driven weight assignments.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138625224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using read-across to build physiologically-based kinetic models: Part 1. Development of a KNIME workflow to assist analogue selection for PBK modelling 利用 "交叉阅读 "建立基于生理学的动力学模型:第 1 部分.开发 KNIME 工作流程以协助为 PBK 建模选择模拟物
Computational Toxicology Pub Date : 2023-12-01 DOI: 10.1016/j.comtox.2023.100292
Courtney V. Thompson , Steven D. Webb , Joseph A. Leedale , Peter E. Penson , Alicia Paini , David Ebbrell , Judith C. Madden
{"title":"Using read-across to build physiologically-based kinetic models: Part 1. Development of a KNIME workflow to assist analogue selection for PBK modelling","authors":"Courtney V. Thompson ,&nbsp;Steven D. Webb ,&nbsp;Joseph A. Leedale ,&nbsp;Peter E. Penson ,&nbsp;Alicia Paini ,&nbsp;David Ebbrell ,&nbsp;Judith C. Madden","doi":"10.1016/j.comtox.2023.100292","DOIUrl":"10.1016/j.comtox.2023.100292","url":null,"abstract":"<div><p>Read-across refers to the process by which information from one (source) chemical is used to infer information about another similar (target) chemical. This method can be used to fill data gaps and so inform safety assessment where data are lacking for chemicals of interest. As one chemical cannot be considered as absolutely similar to another, only similar with respect to a given property, it is essential to justify the selection of similar chemicals (analogues) for the purposes of read-across. A previously created dataset of available physiologically-based kinetic (PBK) models (referred to as the PBK modelling dataset or PMD) was used in the development of a KNIME workflow. KNIME is a freely-available, open-source analytics platform that allows users to create workflows to analyse and visualise data. The KNIME workflow described here was designed to identify chemical analogues with a corresponding model in the PMD. The PMD combined with the KWAAS enables PBK model information from source chemical(s) to be used in a read-across approach to help develop new PBK models for target chemicals. This KNIME workflow was applied to six chemicals, representing different types of chemical classes (drugs, cosmetics, botanicals, industrial chemicals, pesticides, and food additives) to assess its applicability across various industries. Information acquired from these PBK models can be used to support safety assessment of chemicals and reduce reliance on animal testing.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468111323000336/pdfft?md5=9d688403f4e3cdfc0ba25d62d7fa9b35&pid=1-s2.0-S2468111323000336-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138621767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Structural characterization of permethrin-human hemoglobin binding using various molecular docking tools 利用各种分子对接工具对氯菊酯-人血红蛋白结合进行结构表征
Computational Toxicology Pub Date : 2023-11-01 DOI: 10.1016/j.comtox.2023.100291
Shweta Singh, Priyanka Gopi, Prateek Pandya, Jyoti Singh
{"title":"Structural characterization of permethrin-human hemoglobin binding using various molecular docking tools","authors":"Shweta Singh,&nbsp;Priyanka Gopi,&nbsp;Prateek Pandya,&nbsp;Jyoti Singh","doi":"10.1016/j.comtox.2023.100291","DOIUrl":"https://doi.org/10.1016/j.comtox.2023.100291","url":null,"abstract":"<div><p>A molecular docking investigation was conducted to study the interaction between permethrin (PMT), a commonly used pyrethroid insecticide, known for its toxic effects on various organisms, including insects, aquatic life, and mammals, including humans with hemoglobin (HB). To assess its potential binding with the HB target, molecular docking simulations were conducted using different software. Each software has unique algorithms and scoring methods. Employing multiple tools helped us confirm and understand the interaction better. The results indicated high binding strengths across the various docking web servers. The PMT-HB complexation was largely stabilized via the hydrophobic interactions and Van der Waals forces. Also, PMT exhibited binding at a significant distance from the heme, indicating that it does not interfere with the essential biological function of HB, which is the binding of oxygen. In addition, the analysis of toxicological parameters revealed that PMT possesses the ability to induce acute oral and dermal toxicity.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138472170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toxicokinetic modeling of the transfer of polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) into milk of high-yielding cows during negative and positive energy balance 多氯联苯(PCB)和多氯二苯并对二恶英及二苯并呋喃(PCDD/Fs)在能量负平衡和能量正平衡期间向高产奶牛牛奶中转移的毒物动力学模型
Computational Toxicology Pub Date : 2023-11-01 DOI: 10.1016/j.comtox.2023.100290
Jan-Louis Moenning , Julika Lamp , Karin Knappstein , Joachim Molkentin , Andreas Susenbeth , Karl-Heinz Schwind , Sven Dänicke , Peter Fürst , Hans Schenkel , Robert Pieper , Torsten Krause , Jorge Numata
{"title":"Toxicokinetic modeling of the transfer of polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) into milk of high-yielding cows during negative and positive energy balance","authors":"Jan-Louis Moenning ,&nbsp;Julika Lamp ,&nbsp;Karin Knappstein ,&nbsp;Joachim Molkentin ,&nbsp;Andreas Susenbeth ,&nbsp;Karl-Heinz Schwind ,&nbsp;Sven Dänicke ,&nbsp;Peter Fürst ,&nbsp;Hans Schenkel ,&nbsp;Robert Pieper ,&nbsp;Torsten Krause ,&nbsp;Jorge Numata","doi":"10.1016/j.comtox.2023.100290","DOIUrl":"10.1016/j.comtox.2023.100290","url":null,"abstract":"<div><p>A toxicokinetic modeling approach was used to study the transfer of 7 polychlorinated dibenzo-<em>p</em>-dioxins (PCDDs), 10 dibenzofurans (PCDFs), 12 dioxin-like polychlorinated biphenyls (dl-PCB) and 3 non-dioxin like (ndl) PCBs in dairy cows. The model describes the concentration–time profile of each congener in milk and blood of high-yielding dairy cows. It was parametrized using an in-house transfer study with 3 cows exposed to a defined synthetic congener mixture for two dosing periods, as well as 3 control cows to account for background exposure. The first dosing was administered during negative energy balance (NEB) after calving, and the second during positive energy balance (PEB) in late lactation. Results include extrapolated steady-state transfer rates and elimination half-lives, many of which have never been reported before. Transfer rates (<em>TR</em>s) were significantly higher during the NEB by a median of 27%, likely due to an increase in non-milk elimination during PEB. The difference draws attention to the influence of the metabolic state of food-producing animals in risk assessment. Comparison of the <em>TR</em>s derived here with those reported in the literature showed that they were, in median, 43% higher in the NEB phase and 16% higher in the PEB phase probably because we report <em>TR</em>s in steady-state unlike most literature sources.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468111323000312/pdfft?md5=cf199e8430917ae3b8bcae74416bfd03&pid=1-s2.0-S2468111323000312-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135763702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DFT study and docking of xanthone derivatives indicating their ability to inhibit aromatase, a crucial enzyme for the steroid biosynthesis pathway 黄酮衍生物的DFT研究和对接表明其抑制芳香化酶的能力,芳香化酶是类固醇生物合成途径的关键酶
Computational Toxicology Pub Date : 2023-09-28 DOI: 10.1016/j.comtox.2023.100289
Anamika Singh , Nikita Tiwari , Anil Mishra , Monika Gupta
{"title":"DFT study and docking of xanthone derivatives indicating their ability to inhibit aromatase, a crucial enzyme for the steroid biosynthesis pathway","authors":"Anamika Singh ,&nbsp;Nikita Tiwari ,&nbsp;Anil Mishra ,&nbsp;Monika Gupta","doi":"10.1016/j.comtox.2023.100289","DOIUrl":"https://doi.org/10.1016/j.comtox.2023.100289","url":null,"abstract":"<div><p>Aromatase is a crucial enzyme in the aromatization process, which catalyzes the conversion of androgenic steroids to estrogens. Aromatase dysregulation, as well as elevated estrogen levels, have been linked to a variety of malignancies, including breast cancer. Herein, we present the results of the optimization of Xanthones employing density functional theory (DFT) using the B3LYP/6-311G+(d, p) basis set to determine their frontier molecular orbitals, Mulliken charges, and chemical reactivity descriptors. According to the DFT results, Erythrommone has the smallest HOMO-LUMO gap (3.85 Kcal/mol), as well as the greatest electrophilicity index (5.19) and basicity (4.47). Xanthones and their derivatives were docked into the active site cavity of CYP450 to examine their structure-based inhibitory effect. The docking simulation studies predicted that Erythrommone has the lowest binding energy (-7.43 Kcal/mol), which is consistent with the DFT calculations and may function as a powerful CYP450 inhibitor equivalent to its known inhibitor, Exemestane, which has a binding affinity of −8.13 Kcal/mol. The high binding affinity of Xanthones was linked to the existence of hydrogen bonds as well as various hydrophobic interactions between the ligand and the receptor's essential amino acid residues. The findings demonstrated that Xanthones are more powerful inhibitors of the Aromatase enzyme than the recognized inhibitor Exemestane.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49747104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Classification of hepatotoxicity of compounds based on cytotoxicity assays is improved by additional interpretable summaries of high-dimensional gene expression data 通过对高维基因表达数据的额外可解释总结,改进了基于细胞毒性测定的化合物肝毒性分类
Computational Toxicology Pub Date : 2023-09-15 DOI: 10.1016/j.comtox.2023.100288
Marieke Stolte , Wiebke Albrecht , Tim Brecklinghaus , Lisa Gründler , Peng Chen , Jan G. Hengstler , Franziska Kappenberg , Jörg Rahnenführer
{"title":"Classification of hepatotoxicity of compounds based on cytotoxicity assays is improved by additional interpretable summaries of high-dimensional gene expression data","authors":"Marieke Stolte ,&nbsp;Wiebke Albrecht ,&nbsp;Tim Brecklinghaus ,&nbsp;Lisa Gründler ,&nbsp;Peng Chen ,&nbsp;Jan G. Hengstler ,&nbsp;Franziska Kappenberg ,&nbsp;Jörg Rahnenführer","doi":"10.1016/j.comtox.2023.100288","DOIUrl":"https://doi.org/10.1016/j.comtox.2023.100288","url":null,"abstract":"<div><p>Established cytotoxicity assays are commonly used for assessing the hepatotoxic risk of a compound. The addition of gene expression measurements from high-dimensional RNAseq experiments offers the potential for improved classification. However, it is generally not clear how best to summarize the high-dimensional gene measurements into meaningful variables. We propose several intuitive methods for dimension reduction of gene expression measurements toward interpretable variables and explore their relevance in predicting hepatotoxicity, using a dataset with 60 compounds.</p><p>Different advanced statistical learning algorithms are evaluated as classification methods and their performances are compared on the dataset. The best predictions are achieved by tree-based methods such as random forest and xgboost, and tuning the parameters of the algorithm helps to improve the classification accuracy. It is shown that the simultaneous use of data from cytotoxicity assays and from gene expression variables summarized in different ways has a synergistic effect and leads to a better prediction of hepatotoxicity than both sets of variables individually. Further, when gene expression data are summarized, different strategies for the generation of interpretable variables contribute to the overall improved prediction quality. When considering cytotoxicity assays alone, the best classification method yields a mean accuracy of 0.757, while the same classification method and an optimal choice of variables yields a mean accuracy of 0.811. The overall best value for the mean accuracy is 0.821.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49746907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reproducibility of organ-level effects in repeat dose animal studies 重复给药动物实验中器官水平效应的可重复性
Computational Toxicology Pub Date : 2023-08-09 DOI: 10.1016/j.comtox.2023.100287
Katie Paul Friedman , Miran J. Foster , Ly Ly Pham , Madison Feshuk , Sean M. Watford , John F. Wambaugh , Richard S. Judson , R. Woodrow Setzer , Russell S. Thomas
{"title":"Reproducibility of organ-level effects in repeat dose animal studies","authors":"Katie Paul Friedman ,&nbsp;Miran J. Foster ,&nbsp;Ly Ly Pham ,&nbsp;Madison Feshuk ,&nbsp;Sean M. Watford ,&nbsp;John F. Wambaugh ,&nbsp;Richard S. Judson ,&nbsp;R. Woodrow Setzer ,&nbsp;Russell S. Thomas","doi":"10.1016/j.comtox.2023.100287","DOIUrl":"10.1016/j.comtox.2023.100287","url":null,"abstract":"<div><p>This work estimates benchmarks for new approach method (NAM)<!--> <!-->performance in predicting<!--> <!-->organ-level effects in repeat dose studies of adult animals based on variability in replicate animal studies. Treatment-related effect values from the<!--> <!-->Toxicity<!--> <!-->Reference database (v2.1)<!--> <!-->for weight, gross, or histopathological changes in the adrenal gland, liver, kidney, spleen, stomach, and thyroid were used. Rates of chemical concordance among organ-level findings in replicate studies, defined<!--> <!-->by<!--> <!-->repeated chemical only, chemical and species, or chemical and study type, were calculated. Concordance<!--> <!-->was 39–88%, depending on organ, and was highest within species.<!--> <!-->Variance in treatment-related effect values, including lowest effect level (LEL) values and benchmark dose (BMD) values<!--> <!-->when available, was calculated by organ. Multilinear regression modeling,<!--> <!-->using<!--> <!-->study descriptors<!--> <span>of organ-level effect values as covariates<span>, was used to estimate total variance, mean square error</span></span> <!-->(MSE), and root residual mean square error (RMSE). MSE values, interpreted as estimates of unexplained variance, suggest<!--> <!-->study<!--> <!-->descriptors<!--> <!-->accounted<!--> <!-->for<!--> <!-->52–69% of total<!--> <!-->variance in<!--> <!-->organ-level<!--> <!-->LELs.<!--> <!-->RMSE ranged from<!--> <!-->0.41 to 0.68 log<sub>10</sub>-mg/kg/day. Differences between organ-level effects from chronic (CHR) and subchronic (SUB) dosing regimens were also quantified. Odds ratios indicated CHR organ effects were unlikely if the SUB study was negative. Mean differences of CHR - SUB organ-level LELs ranged from − 0.38 to − 0.19 log<sub>10</sub> <!-->mg/kg/day; the magnitudes of these mean differences were less than RMSE for replicate studies. Finally, <em>in vitro</em> to <em>in vivo</em> extrapolation (IVIVE) was employed to compare bioactive concentrations from <em>in vitro</em> NAMs for kidney and liver to LELs. The observed mean difference between LELs and mean IVIVE dose predictions approached 0.5 log<sub>10</sub>-mg/kg/day, but differences by chemical ranged widely. Overall, variability in repeat dose organ-level effects suggests expectations for quantitative accuracy of NAM prediction of LELs should be at least ± 1 log<sub>10</sub>-mg/kg/day, with qualitative accuracy not exceeding 70%.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46668224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Interactions of coumarin and amine ligands with six cytochrome P450 2D6 allelic variants: Molecular docking 香豆素和胺配体与6种细胞色素P450 2D6等位基因变异的相互作用:分子对接
Computational Toxicology Pub Date : 2023-08-01 DOI: 10.1016/j.comtox.2023.100284
Amelia Nathania Dong , Nafees Ahemad , Yan Pan , Uma Devi Palanisamy , Chin Eng Ong
{"title":"Interactions of coumarin and amine ligands with six cytochrome P450 2D6 allelic variants: Molecular docking","authors":"Amelia Nathania Dong ,&nbsp;Nafees Ahemad ,&nbsp;Yan Pan ,&nbsp;Uma Devi Palanisamy ,&nbsp;Chin Eng Ong","doi":"10.1016/j.comtox.2023.100284","DOIUrl":"10.1016/j.comtox.2023.100284","url":null,"abstract":"<div><p>Human CYP2D6 contributes extensively to the biotransformation of important therapeutic drugs. CYP2D6 substrate and inhibitor specificity may be affected by genetic polymorphism. This study aimed to characterize interactions of three typical ligands, 3-cyano-7-ethoxycoumarin, fluoxetine and terbinafine with six CYP2D6 variants using molecular docking simulations. The compounds were docked individually to the CYP2D6 models based on published crystal structure (PDB code: 3TBG). All ligands bound within the active site pocket near the heme. Binding involved residues found in critical secondary structures that formed the active site boundary: B-C loop, F helix, F-G loop, β-1 strands and I helix. Twenty-five amino acids were involved in the binding, and all were located in the known substrate recognition sites. Hydrophobic bonds involving phenylalanine (Phe120, Phe384) dominated CEC binding whereas electrostatic bonds between the protonated nitrogen with acidic residues (Glu216, Glu222, Asp301) dominated in binding of fluoxetine and terbinafine. Collectively, the subtle structural changes in the active site and substrate access channels induced by the mutations in the variants contributed to differential ligand docking poses. This study has provided insights into important molecular properties for CYP2D6 catalysis and inhibition, and formed basis for further exploration of structural determinants for potency and specificity of CYP2D6 ligands.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46273574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural alerts and Machine learning modeling of “Six-pack” toxicity as alternative to animal testing 结构警报和“六块”毒性的机器学习建模作为动物试验的替代方案
Computational Toxicology Pub Date : 2023-08-01 DOI: 10.1016/j.comtox.2023.100280
Yaroslav Chushak , Jeffery M. Gearhart , Rebecca A. Clewell
{"title":"Structural alerts and Machine learning modeling of “Six-pack” toxicity as alternative to animal testing","authors":"Yaroslav Chushak ,&nbsp;Jeffery M. Gearhart ,&nbsp;Rebecca A. Clewell","doi":"10.1016/j.comtox.2023.100280","DOIUrl":"10.1016/j.comtox.2023.100280","url":null,"abstract":"<div><p>The “Six Pack” is a set of animal toxicity studies that are widely used by industry and regulatory agencies to evaluate the toxicity of chemicals. It consists of three systemic toxicities (acute oral toxicity, acute inhalation toxicity and acute dermal toxicity) and three specific organ endpoints (eye damage/irritation, skin corrosion/irritation and skin sensitization). In the last two decades there has been a growing effort in the scientific community, as well as in regulatory agencies, to reduce and replace animal tests through implementation of alternative approaches. Computational methods in combination with <em>in vitro</em> measurements are pursued actively as the integrative approach for accurate and reliable assessment of chemical toxicity. Here, we generated structural alerts and developed a set of ten classification models for all six-pack endpoints using different molecular descriptors and machine learning techniques. The coverage of active chemicals by structural alerts was in the range from 24 % for acute inhalation toxicity to 52 % for acute oral toxicity. To establish confidence in model predictions, we used two different approaches to estimate the applicability domain (AD). The first approach was based on similarity distance between the query chemical and chemicals in the training set. In the second approach, the AD was estimated based on distance to model. The prediction accuracy of models evaluated using the validation sets was in the range from 0.67 for acute inhalation toxicity to 0.78 for acute dermal toxicity. The evaluation of models for chemicals within the similarity-based AD showed similar accuracy compared with the whole validation set. On the other hand, improvement of model performance was observed by using the distance to model approach to estimate AD, e.g. when distance to model was set to 0.3 the accuracy of predictions ranged from 0.75 for acute inhalation toxicity to 0.86 for acute oral toxicity. The combination of structural alerts and classification models provide a rapid means to screen a list of compounds for six-pack toxicity and to prioritize chemicals for <em>in vitro</em> toxicity evaluation.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48314082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信