Arnold Mathematical Journal最新文献

筛选
英文 中文
Cutpoints of Invariant Subcontinua of Polynomial Julia Sets 多项式Julia集不变次连续线的截点
Arnold Mathematical Journal Pub Date : 2021-08-16 DOI: 10.1007/s40598-021-00186-8
Alexander Blokh, Lex Oversteegen, Vladlen Timorin
{"title":"Cutpoints of Invariant Subcontinua of Polynomial Julia Sets","authors":"Alexander Blokh,&nbsp;Lex Oversteegen,&nbsp;Vladlen Timorin","doi":"10.1007/s40598-021-00186-8","DOIUrl":"10.1007/s40598-021-00186-8","url":null,"abstract":"<div><p>We prove fixed point results for branched covering maps <i>f</i> of the plane. For complex polynomials <i>P</i> with Julia set <span>(J_{P})</span> these imply that periodic cutpoints of some invariant subcontinua of <span>(J_{P})</span> are also cutpoints of <span>(J_{P})</span>. We deduce that, under certain assumptions on invariant subcontinua <i>Q</i> of <span>(J_{P})</span>, every Riemann ray to <i>Q</i> landing at a periodic repelling/parabolic point <span>(xin Q)</span> is isotopic to a Riemann ray to <span>(J_{P})</span> relative to <i>Q</i>.</p></div>","PeriodicalId":37546,"journal":{"name":"Arnold Mathematical Journal","volume":"8 2","pages":"271 - 284"},"PeriodicalIF":0.0,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40598-021-00186-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44130685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Surfaces of Section for Seifert Fibrations Seifert纤维截面表面
Arnold Mathematical Journal Pub Date : 2021-08-05 DOI: 10.1007/s40598-021-00184-w
Bernhard Albach, Hansjörg Geiges
{"title":"Surfaces of Section for Seifert Fibrations","authors":"Bernhard Albach,&nbsp;Hansjörg Geiges","doi":"10.1007/s40598-021-00184-w","DOIUrl":"10.1007/s40598-021-00184-w","url":null,"abstract":"<div><p>We classify global surfaces of section for flows on 3-manifolds defining Seifert fibrations. We discuss branched coverings—one way or the other—between surfaces of section for the Hopf flow and those for any other Seifert fibration of the 3-sphere, and we relate these surfaces of section to algebraic curves in weighted complex projective planes.</p></div>","PeriodicalId":37546,"journal":{"name":"Arnold Mathematical Journal","volume":"7 4","pages":"573 - 597"},"PeriodicalIF":0.0,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40598-021-00184-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46533244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
On a Theorem of Lyapunov–Poincaré in Higher Dimensions 关于高维Lyapunov–Poincaré的一个定理
Arnold Mathematical Journal Pub Date : 2021-07-13 DOI: 10.1007/s40598-021-00183-x
V. León, B. Scárdua
{"title":"On a Theorem of Lyapunov–Poincaré in Higher Dimensions","authors":"V. León,&nbsp;B. Scárdua","doi":"10.1007/s40598-021-00183-x","DOIUrl":"10.1007/s40598-021-00183-x","url":null,"abstract":"<div><p>The classical Lyapunov–Poincaré center theorem assures the existence of a first integral for an analytic 1-form near a center singularity in dimension two, provided that the first jet of the 1-form is nondegenerate. The basic point is the existence of an analytic first integral for the given 1-form. In this paper, we consider generalizations for two main frameworks: (1) real analytic foliations of codimension one in higher dimension and (2) singular holomorphic foliations in dimension two. All this is related to the problem of finding criteria assuring the existence of analytic first integrals for a given codimension one germ with a suitable first jet. Our approach consists in giving an interpretation of the center theorem in terms of holomorphic foliations and, following an idea of Moussu, apply the holomorphic foliations arsenal to obtain the required first integral. As a consequence we are able to revisit some of Reeb’s classical results on integrable perturbations of exact homogeneous 1-forms, and prove versions of these in the framework of non-isolated (perturbations of transversely Morse type) singularities.</p></div>","PeriodicalId":37546,"journal":{"name":"Arnold Mathematical Journal","volume":"7 4","pages":"561 - 571"},"PeriodicalIF":0.0,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40598-021-00183-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47105478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Real Lines on Random Cubic Surfaces 随机三次曲面上的实线
Arnold Mathematical Journal Pub Date : 2021-07-02 DOI: 10.1007/s40598-021-00182-y
Rida Ait El Manssour, Mara Belotti, Chiara Meroni
{"title":"Real Lines on Random Cubic Surfaces","authors":"Rida Ait El Manssour,&nbsp;Mara Belotti,&nbsp;Chiara Meroni","doi":"10.1007/s40598-021-00182-y","DOIUrl":"10.1007/s40598-021-00182-y","url":null,"abstract":"<div><p>We give an explicit formula for the expectation of the number of real lines on a random invariant cubic surface, i.e., a surface <span>(Zsubset {mathbb {R}}{mathrm {P}}^3)</span> defined by a random gaussian polynomial whose probability distribution is invariant under the action of the orthogonal group <i>O</i>(4) by change of variables. Such invariant distributions are completely described by one parameter <span>(lambda in [0,1])</span> and as a function of this parameter the expected number of real lines equals: </p><div><div><span>$$begin{aligned} E_lambda =frac{9(8lambda ^2+(1-lambda )^2)}{2lambda ^2+(1-lambda )^2}left( frac{2lambda ^2}{8lambda ^2+(1-lambda )^2}-frac{1}{3}+frac{2}{3}sqrt{frac{8lambda ^2+(1-lambda )^2}{20lambda ^2+(1-lambda )^2}}right) . end{aligned}$$</span></div></div><p>This result generalizes previous results by Basu et al. (Math Ann 374(3–4):1773–1810, 2019) for the case of a Kostlan polynomial, which corresponds to <span>(lambda =frac{1}{3})</span> and for which <span>(E_{frac{1}{3}}=6sqrt{2}-3.)</span> Moreover, we show that the expectation of the number of real lines is maximized by random purely harmonic cubic polynomials, which corresponds to the case <span>(lambda =1)</span> and for which <span>(E_1=24sqrt{frac{2}{5}}-3)</span>.</p></div>","PeriodicalId":37546,"journal":{"name":"Arnold Mathematical Journal","volume":"7 4","pages":"541 - 559"},"PeriodicalIF":0.0,"publicationDate":"2021-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40598-021-00182-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47957546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Strange Duality Between the Quadrangle Complete Intersection Singularities 四边形完全交奇异性之间的奇异对偶性
Arnold Mathematical Journal Pub Date : 2021-06-22 DOI: 10.1007/s40598-021-00181-z
Wolfgang Ebeling, Atsushi Takahashi
{"title":"Strange Duality Between the Quadrangle Complete Intersection Singularities","authors":"Wolfgang Ebeling,&nbsp;Atsushi Takahashi","doi":"10.1007/s40598-021-00181-z","DOIUrl":"10.1007/s40598-021-00181-z","url":null,"abstract":"<div><p>There is a strange duality between the quadrangle isolated complete intersection singularities discovered by the first author and Wall. We derive this duality from a variation of the Berglund–Hübsch transposition of invertible polynomials introduced in our previous work about the strange duality between hypersurface and complete intersection singularities using matrix factorizations of size two.</p></div>","PeriodicalId":37546,"journal":{"name":"Arnold Mathematical Journal","volume":"7 4","pages":"519 - 540"},"PeriodicalIF":0.0,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40598-021-00181-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49324102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Galois–Dynamics Correspondence for Unicritical Polynomials 单临界多项式的Galois–动力学对应
Arnold Mathematical Journal Pub Date : 2021-06-09 DOI: 10.1007/s40598-021-00179-7
Robin Zhang
{"title":"A Galois–Dynamics Correspondence for Unicritical Polynomials","authors":"Robin Zhang","doi":"10.1007/s40598-021-00179-7","DOIUrl":"10.1007/s40598-021-00179-7","url":null,"abstract":"<div><p>In an analogy with the Galois homothety property for torsion points of abelian varieties that was used in the proof of the Mordell–Lang conjecture, we describe a correspondence between the action of a Galois group and the dynamical action of a rational map. For nonlinear polynomials with rational coefficients, the irreducibility of the associated dynatomic polynomial serves as a convenient criterion, although we also verify that the correspondence occurs in several cases when the dynatomic polynomial is reducible. The work of Morton, Morton–Patel, and Vivaldi–Hatjispyros in the early 1990s connected the irreducibility and Galois-theoretic properties of dynatomic polynomials to rational periodic points; from the Galois–dynamics correspondence, we derive similar consequences for quadratic periodic points of unicritical polynomials. This is sufficient to deduce the non-existence of quadratic periodic points of quadratic polynomials with exact period 5 and 6, outside of a specified finite set from Morton and Krumm’s work in explicit Hilbert irreducibility.</p></div>","PeriodicalId":37546,"journal":{"name":"Arnold Mathematical Journal","volume":"7 3","pages":"467 - 481"},"PeriodicalIF":0.0,"publicationDate":"2021-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40598-021-00179-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50466318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Conjectures on Stably Newton Degenerate Singularities 关于稳定牛顿退化奇点的猜想
Arnold Mathematical Journal Pub Date : 2021-06-07 DOI: 10.1007/s40598-021-00178-8
Jan Stevens
{"title":"Conjectures on Stably Newton Degenerate Singularities","authors":"Jan Stevens","doi":"10.1007/s40598-021-00178-8","DOIUrl":"10.1007/s40598-021-00178-8","url":null,"abstract":"<div><p>We discuss a problem of Arnold, whether every function is stably equivalent to one which is non-degenerate for its Newton diagram. We argue that the answer is negative. We describe a method to make functions non-degenerate after stabilisation and give examples of singularities where this method does not work. We conjecture that they are in fact stably degenerate, that is not stably equivalent to non-degenerate functions.</p><p>We review the various non-degeneracy concepts in the literature. For finite characteristic, we conjecture that there are no wild vanishing cycles for non-degenerate singularities. This implies that the simplest example of singularities with finite Milnor number, <span>(x^p+x^q)</span> in characteristic <i>p</i>, is not stably equivalent to a non-degenerate function. We argue that irreducible plane curves with an arbitrary number of Puiseux pairs (in characteristic zero) are stably non-degenerate. As the stabilisation involves many variables, it becomes very difficult to determine the Newton diagram in general, but the form of the equations indicates that the defining functions are non-degenerate.</p></div>","PeriodicalId":37546,"journal":{"name":"Arnold Mathematical Journal","volume":"7 3","pages":"441 - 465"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40598-021-00178-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43756364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Remarks on Joachimsthal Integral and Poritsky Property 关于Joachimshal积分和Poritsky性质的注记
Arnold Mathematical Journal Pub Date : 2021-06-01 DOI: 10.1007/s40598-021-00180-0
Maxim Arnold, Serge Tabachnikov
{"title":"Remarks on Joachimsthal Integral and Poritsky Property","authors":"Maxim Arnold,&nbsp;Serge Tabachnikov","doi":"10.1007/s40598-021-00180-0","DOIUrl":"10.1007/s40598-021-00180-0","url":null,"abstract":"<div><p>The billiard in an ellipse has a conserved quantity, the Joachimsthal integral. We show that the existence of such an integral characterizes conics. We extend this result to the spherical and hyperbolic geometries and to higher dimensions. We connect the existence of Joachimsthal integral with the Poritsky property, a property of billiard curves, called so after H. Poritsky whose important paper Poritsky (Ann Math 51:446–470, 1950) was one of the early studies of the billiard problem.</p></div>","PeriodicalId":37546,"journal":{"name":"Arnold Mathematical Journal","volume":"7 3","pages":"483 - 491"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40598-021-00180-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50434041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Simplicity of Spectra for Bethe Subalgebras in $${mathrm {Y}}({mathfrak {gl}}_2)$$ Y ( gl 2 $${mathrm{Y}}({mathfrak{gl}}_2)$$Y(gl2)中Bethe子代数的谱的简单性
Arnold Mathematical Journal Pub Date : 2021-06-01 DOI: 10.1007/s40598-020-00171-7
I. Mashanova-Golikova
{"title":"Simplicity of Spectra for Bethe Subalgebras in \u0000 \u0000 \u0000 \u0000 $${mathrm {Y}}({mathfrak {gl}}_2)$$\u0000 \u0000 \u0000 Y\u0000 (\u0000 \u0000 gl\u0000 2\u0000 ","authors":"I. Mashanova-Golikova","doi":"10.1007/s40598-020-00171-7","DOIUrl":"https://doi.org/10.1007/s40598-020-00171-7","url":null,"abstract":"","PeriodicalId":37546,"journal":{"name":"Arnold Mathematical Journal","volume":"7 1","pages":"313-339"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40598-020-00171-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46280083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Inflation of Poorly Conditioned Zeros of Systems of Analytic Functions 解析函数系统的弱条件零的膨胀
Arnold Mathematical Journal Pub Date : 2021-05-27 DOI: 10.1007/s40598-021-00177-9
Michael Burr, Anton Leykin
{"title":"Inflation of Poorly Conditioned Zeros of Systems of Analytic Functions","authors":"Michael Burr,&nbsp;Anton Leykin","doi":"10.1007/s40598-021-00177-9","DOIUrl":"10.1007/s40598-021-00177-9","url":null,"abstract":"<div><p>Given a system of analytic functions and an approximate zero, we introduce inflation to transform this system into one with a regular quadratic zero. This leads to a method for isolating a cluster of zeros of the given system.</p></div>","PeriodicalId":37546,"journal":{"name":"Arnold Mathematical Journal","volume":"7 3","pages":"431 - 440"},"PeriodicalIF":0.0,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40598-021-00177-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44052661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信