Fabien Bernachy-Barbe, Jean-Mathieu Vanson, Marc Josien
{"title":"An application of the DEM-FFT method to predict the thermal conductivity of high burnup fragmented fuel","authors":"Fabien Bernachy-Barbe, Jean-Mathieu Vanson, Marc Josien","doi":"10.1016/j.jnucmat.2024.155494","DOIUrl":"10.1016/j.jnucmat.2024.155494","url":null,"abstract":"<div><div>Understanding Fuel Fragmentation, Relocation and Dispersal (FFRD) phenomena is a major item to predict the behavior of fuel rods in the event of a Pressurized Water Reactor loss-of-coolant hypothetical scenario. In order to introduce an effective medium for fragmented fuel that could be used in fuel performance codes, the heat transfer properties of <span><math><mi>U</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> granular beds in He-Kr-Xe gas mixes was studied numerically. The Discrete Element Method was first used to compute the spatial arrangement of fragments only submitted to gravity with a representative granulometric distribution. These generated geometries were then transformed into a 3D grid (voxelized) to perform numerical homogenization and compute their effective properties using a Fast Fourier Transform solver for heat transfer. Different hypotheses were made in the voxelation process about the treatment of gas-solid and solid-solid interfaces, which in turn provided different estimates of the effective properties. Due to limits on the discretization and extended particle size distributions, a two-scale scheme was introduced and numerically tested against direct computations. For several granular beds, computed thermal conductivities were compared to analytical models for granular materials. Some heat transfer properties of fragmented fuel at several burnups were then computed, taking into account approximations for Knudsen and radiation size effects.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"604 ","pages":"Article 155494"},"PeriodicalIF":2.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
La Han, Chaoquan Zhao, Xiaobao Tian, Qingyuan Wang, Wentao Jiang, Chuanlong Xu, Haidong Fan
{"title":"Molecular dynamics simulations on the evolution of irradiation-induced dislocation loops in FeCoNiCrCu high-entropy alloy","authors":"La Han, Chaoquan Zhao, Xiaobao Tian, Qingyuan Wang, Wentao Jiang, Chuanlong Xu, Haidong Fan","doi":"10.1016/j.jnucmat.2024.155514","DOIUrl":"10.1016/j.jnucmat.2024.155514","url":null,"abstract":"<div><div>High-entropy alloys (HEAs) have received extensive attention due to their excellent irradiation resistance. In this work, the displacement cascade simulations were performed by using the molecular dynamics (MD) method to study the dislocation loop evolution in FeCoNiCrCu HEA. The simulation results showed the dislocation loops evolution in pure Ni were dominated by Frank loops with larger size but lower density, which was caused by the absorption of prismatic dislocation loops by Frank loops. In contrast, prismatic dislocation loops were more prevailing in FeCoNiCrCu HEA with smaller size but higher density, since the interactions between dislocation loops were suppressed in HEA. To figure out the influence of HEA on dislocation loop evolution, the formation energy, interaction energy and mobility were analyzed. It was found that formation energy and interaction energy were basically the same, while the mobility of prismatic dislocation loop in HEA was much lower than that in pure Ni, which was considered as the main reason why the irradiation-induced dislocation loops were more difficult to interact and grow in HEA. The current work provides new insights into understanding the irradiation resistance from micro-mechanism in FeCoNiCrCu HEAs.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"604 ","pages":"Article 155514"},"PeriodicalIF":2.8,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of grain boundary engineering on corrosion behavior and mechanical properties of GH3535 alloy in LiCl-KCl molten salt","authors":"Chaochao Wang , Jumei Zhang , Zhongdi Yu , Jinping Wu","doi":"10.1016/j.jnucmat.2024.155513","DOIUrl":"10.1016/j.jnucmat.2024.155513","url":null,"abstract":"<div><div>This study investigated the effect of grain boundary engineering (GBE) on the corrosion behavior and high-temperature mechanical properties of GH3535 alloy in 45LiCl-55KCl wt.% molten salt at 550 °C. After corrosion for 300 h, a triple-layered product was formed on the solid solution specimen (Non-GBE), consisting of discontinuous NiCr<sub>2</sub>O<sub>4</sub> outer-layer, Ni<sub>3</sub>Fe middle-layer, and NiCr<sub>2</sub>O<sub>4</sub> inner-layer. For the GBE specimen, quite milder corrosion occurred on it that its surface still kept original polishing scratches. The real mass loss of the Non-GBE alloy (6.85 mg/cm<sup>2</sup>) is one order of magnitude higher than that of GBE (0.65 mg/cm<sup>2</sup>). The beneficial effect of GBE on improving alloy's corrosion resistance is owing to: surface carbide dissolution, discontinuous random high angle grain boundary and low dislocation density. High proportion of Σ3<sup>n</sup> grain boundaries and less carbide precipitation ensure stable high-temperature deformation performance of GBE sample in molten salt.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"604 ","pages":"Article 155513"},"PeriodicalIF":2.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiongshuai Ji , Changqing Liu , Jianyuan Huang , Huafeng Zhang , Fengjiao Niu , Bo Chen , Jianguo Zhao , Yuanchao Zhao , Yajie Guo
{"title":"Pressure-less joining SiCf/SiC tube and Kovar alloy with AgCuInTi filler: Interfacial reactions and mechanical properties","authors":"Xiongshuai Ji , Changqing Liu , Jianyuan Huang , Huafeng Zhang , Fengjiao Niu , Bo Chen , Jianguo Zhao , Yuanchao Zhao , Yajie Guo","doi":"10.1016/j.jnucmat.2024.155501","DOIUrl":"10.1016/j.jnucmat.2024.155501","url":null,"abstract":"<div><div>The brazing of tube-bar structures is more difficult than that of traditional plate-plate structures, owing to the absence of pressure on the interface. In this study, AgCuInTi filler was employed to join SiC<sub>f</sub>/SiC tube and Kovar alloy bar and the joining can be completed at a significantly lower temperature of 780 °C, benefiting from the addition of In. Moreover, the lower temperature not only hindered the formation of Fe<sub>2</sub>Si and Ni<sub>2</sub>Si at the ceramic interface, but also avoided the appearance of the Fe<sub>2</sub>Ti phase in the joint. The typical microstructure of the joint was SiC<sub>f</sub>/SiC-(TiC + Ti<sub>5</sub>Si<sub>3</sub>) layer + (Ag, In) (s, s) + Cu (s, s) + Cu<sub>7</sub>In<sub>3</sub>+ Ni<sub>3</sub>Ti-Kovar. The finite element analysis indicated that lower brazing temperature can also reduce the level of residual stress compared to that of AgCuTi filler, which contributes to the maximum shear strength of 86.1 MPa despite the press-less joining. The fracture path originated from the SiC fibers, then passed through the interfacial reaction layer, and finally extended into the brazing seam.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"604 ","pages":"Article 155501"},"PeriodicalIF":2.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Huang , Yuhao Zhou , Kai Chen , Tianguo Wei , Shixin Gao , Hua Pang , Huifang Yue , Kun Zhang , Zhao Shen , Lefu Zhang
{"title":"The oxidation-dissolution behavior of Cr-coated Zr alloy in high temperature water","authors":"Tao Huang , Yuhao Zhou , Kai Chen , Tianguo Wei , Shixin Gao , Hua Pang , Huifang Yue , Kun Zhang , Zhao Shen , Lefu Zhang","doi":"10.1016/j.jnucmat.2024.155504","DOIUrl":"10.1016/j.jnucmat.2024.155504","url":null,"abstract":"<div><div>The corrosion and dissolution behavior of Cr-coated Zr alloy were investigated in high temperature water under varying dissolved oxygen (DO) and temperatures. Results demonstrate that the oxidation and dissolution rates of Cr coatings increase significantly with higher DO levels and temperature, while the Zr substrate remains unaffected by DO concentration. At DO levels below 10 ppb, Cr coatings exhibit high stability, but at 300 ppb DO, rapid corrosion/dissolution and spallation occur. The electrochemical potential (ECP) shifts in response to temperature and DO, driving the dissolution mechanism through three distinct region: steady-state, field-assisted dissolution (FAD), and complete dissolution. During the FAD period, a porous nanocrystalline Cr<sub>2</sub>O<sub>3</sub> layer with residual Cr forms, characterized by non-uniform dissolution due to preferential oxidation at grain boundaries and microstructural defects. The soluble <span><math><msubsup><mtext>HCrO</mtext><mn>4</mn><mo>−</mo></msubsup></math></span> ions form at the base of the porous layer, followed by partial recrystallization at the surface, leading to the development of a thin Cr<sub>2</sub>O<sub>3</sub> crystalline layer.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"604 ","pages":"Article 155504"},"PeriodicalIF":2.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peng Wang , Bruce Kammenzind , Richard Smith , Arthur Motta , Matthieu Aumand , Damien Kaczorowski , Mukesh Bachhav , Gary Was
{"title":"Discerning the effect of various irradiation modes on the corrosion of Zircaloy-4","authors":"Peng Wang , Bruce Kammenzind , Richard Smith , Arthur Motta , Matthieu Aumand , Damien Kaczorowski , Mukesh Bachhav , Gary Was","doi":"10.1016/j.jnucmat.2024.155505","DOIUrl":"10.1016/j.jnucmat.2024.155505","url":null,"abstract":"<div><div>Using proton irradiation, this study investigates the individual influence of several factors on the corrosion kinetics of Zircaloy-4 in a hydrogenated water environment simulating a Pressurized Water Reactor (PWR). Using both simultaneous irradiation-corrosion and autoclave corrosion, we separately examine (i) the effect of pre-irradiation on modifying the structure of the material, (ii) the impact of irradiation on creating defects in the growing oxide layer during corrosion, and (iii) the influence of irradiation on increasing the corrosion potential through radiolysis during corrosion. To replicate the neutron-irradiated microstructure, two proton pre-irradiation schedules were employed: Schedule 1 (isothermal irradiation at 350 °C to 5 dpa) to simulate high-temperature PWR conditions, and Schedule 2 (two-step process: irradiation to 2.5 dpa at -10 °C followed by 2.5 dpa at 350 °C) to simulate lower temperature PWR and Boiling Water Reactor (BWR) conditions. Long-term autoclave corrosion testing for 360 days at 320 °C revealed no significant difference between unirradiated samples and those pre-irradiated according to either schedule, with all samples exhibiting sub-cubic kinetics within the pre-transition regime. Pre-irradiated samples underwent Simultaneous Irradiation Corrosion (SIC) tests, corroding in 320 °C water while being irradiated with protons. Corrosion was found to accelerate in all SIC-tested samples relative to autoclave conditions, with the greatest increase observed in non-pre-irradiated regions of the samples. Pre-irradiation with either schedule resulted in a slower corrosion rate compared to non-pre-irradiated regions under SIC conditions. The degree of radiolysis observed in the SIC tests surpassed typical PWR conditions, approaching levels found in BWRs. Radiolysis products were identified as a primary contributors to accelerated corrosion, corroborated by radiolysis bar tests. These findings underscore the intricate interactions between irradiation, corrosion, and water chemistry in determining Zircaloy-4 corrosion kinetics within nuclear reactor environments.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"604 ","pages":"Article 155505"},"PeriodicalIF":2.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xusheng Qian , Ruoyu Li , Tongtong Liu , Kejin Zhang , Hao Lu
{"title":"The Formation Mechanism of Martensite and Type II Boundary in 52M/SA508-3 Joints under Different Pulse Frequencies and Their Effects on Helium Bubbles","authors":"Xusheng Qian , Ruoyu Li , Tongtong Liu , Kejin Zhang , Hao Lu","doi":"10.1016/j.jnucmat.2024.155503","DOIUrl":"10.1016/j.jnucmat.2024.155503","url":null,"abstract":"<div><div>The white bright band (WBB) in the 52M/SA508–3 pulsed TIG joint is clearly visible after metallographic etching. Increased pulse frequency leads to enhancing oscillation of the molten pool and promoting deeper heat penetration. This results in the formation of the δ/γ phase boundary, facilitating martensite and Type II boundary formation within the WBB. High-frequency pulsing refines grain structure and increases grain boundaries, inhibiting helium bubble diffusion and growth. As frequency rises from 15 kHz to 50 kHz, WBB width increases from 20 μm to 35 μm, martensite proportion from 0 % to 77.1 %, and austenite grain size decreases 26.1 %.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"604 ","pages":"Article 155503"},"PeriodicalIF":2.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artem M. Dmitriev , Moïse Gonda , Fabien Sanchez , Laurent Marot , Roland Steiner , Pierre-Olivier Renault , Ernst Meyer
{"title":"Morphological modification of Rh-C coatings upon low-energy Ar+ ion sputtering","authors":"Artem M. Dmitriev , Moïse Gonda , Fabien Sanchez , Laurent Marot , Roland Steiner , Pierre-Olivier Renault , Ernst Meyer","doi":"10.1016/j.jnucmat.2024.155502","DOIUrl":"10.1016/j.jnucmat.2024.155502","url":null,"abstract":"<div><div>In ITER, the metallic first mirrors (FMs) will undergo erosion due to their proximity to the fusion plasma and deposition of materials of the first wall, leading to mirror reflectivity's decrease. In vacuo plasma cleaning is foreseen for restoration of the FMs' optical properties by means of ion sputtering. Previously, it was shown that cyclic cleaning of polished metallic mirrors can lead to the development of pits due to low carbon amounts in the bulk mirror. The pitting formation is detrimental to the mirror's optical properties. This study aims to investigate the influence of carbon concentration on mirror morphology changes due to cyclic low-temperature plasma irradiation. Five rhodium (Rh) and carbon (C) coatings with different amounts of C were deposited on a pure Rh film on top of polished stainless steel substrates. All the samples were prepared by magnetron sputtering using a single or dual magnetron. Prior to each cycle of the plasma cleaning, a 20<!--> <!-->nm layer of Al<sub>2</sub>O<sub>3</sub> was deposited on the Rh-C samples. The plasma discharge was created with argon gas using a 60 MHz radio frequency excitation and resulted in the complete removal of the alumina layer after each cycle. The surface morphology of the mirrors was characterized by employing scanning electron microscopy (SEM) and focused ion beam (FIB). After the cyclic cleaning, the coatings containing carbon have failed, showing either partial delamination, cracking, or total delamination. Additionally, all the mirrors demonstrated the formation of mounds on the surface, while 17 at.% of carbon in the film led to the development of pits. The mechanisms of coating failure and such morphological modification are discussed in the paper.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"604 ","pages":"Article 155502"},"PeriodicalIF":2.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J.P. Pollard , A. Dumain , B. Stratton , S. Irukuvarghula , J. Astbury , S. Middleburgh , F. Giuliani , S. Humphry-Baker
{"title":"Hydrogen desorption kinetics of hafnium hydride powders","authors":"J.P. Pollard , A. Dumain , B. Stratton , S. Irukuvarghula , J. Astbury , S. Middleburgh , F. Giuliani , S. Humphry-Baker","doi":"10.1016/j.jnucmat.2024.155499","DOIUrl":"10.1016/j.jnucmat.2024.155499","url":null,"abstract":"<div><div>The kinetics of hydrogen gas release from hafnium hydride are investigated by combining experiments and density functional theory. The material is a candidate neutron shield for compact nuclear reactors, where hydrogen release will lead to a degradation in moderating function. Experimentally, we have studied the decomposition of epsilon phase (HfH<sub>2-x</sub>) powders from 25 to 1000 °C using thermogravimetry and X-ray diffraction. Isochronal heating reveals 3 characteristic desorption peaks corresponding to the release of hydrogen from each phase (ε-HfH<sub>2-x</sub>, δ-HfH<sub>1.6-x</sub> and α-Hf), at ∼ 350, 415, and 700 °C. This is well supported by the modelling output from density functional theory. A Kissinger analysis allowed for activation energies for desorption to be calculated (∼150 kJ/mol, 170 kJ/mol and 90 kJ/mol respectively). The peak shape and desorption rate data suggests that a second order diffusion limited reaction controls the ε→ε+δ desorption, a first order interface limited reaction controls ε+δ→δ, and a surface limited zeroth order reaction limits the desorption of the δ+α phases. The analysis suggests that, at least for δ→α regime, engineering solutions for improved thermal stability should focus on reductions in surface reactivity.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"604 ","pages":"Article 155499"},"PeriodicalIF":2.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Poleshchuk , D. Terentyev , A. Galatanu , K. Verbeken
{"title":"Investigation of neutron irradiated W/CuCrZr joints","authors":"K. Poleshchuk , D. Terentyev , A. Galatanu , K. Verbeken","doi":"10.1016/j.jnucmat.2024.155496","DOIUrl":"10.1016/j.jnucmat.2024.155496","url":null,"abstract":"<div><div>This study investigates the effects of neutron irradiation on tungsten (W) and copper-chromium-zirconium (CuCrZr) joints under conditions mimicking the high neutron flux environment of a tokamak fusion reactor. Samples of W/CuCrZr joints were subjected to irradiation in the Belgian Reactor 2 (BR2) nuclear reactor at SCK CEN (Belgian Nuclear Research Centre) to simulate the intense neutron exposure characteristic for International Thermonuclear Experimental Reactor (ITER) and DEMOnstration power plant reactor (DEMO) operations. The primary objective was to evaluate changes in the mechanical properties and microstructure of these materials, which are critical for their potential use in plasma-facing components.</div><div>It is revealed that a significant reduction in tensile elongation of the joint, indicating some degree of embrittlement, is observed after the irradiation. Importantly, this effect is independent of the irradiation temperature. Possible physical reasons for the observed phenomenon are discussed.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"604 ","pages":"Article 155496"},"PeriodicalIF":2.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}