Jian Zhang, Fengjiu Zhang, Xiaodong Kang, Baozhen Li
{"title":"Development and Application of Chemical EOR Technologies in China Offshore Oil Fields","authors":"Jian Zhang, Fengjiu Zhang, Xiaodong Kang, Baozhen Li","doi":"10.5772/intechopen.88942","DOIUrl":"https://doi.org/10.5772/intechopen.88942","url":null,"abstract":"At present, polymer flooding as the most effective chemical EOR technique is widely used in onshore oil fields in the world. Also, it has been successfully applied in China offshore oil fields as a major EOR technology. CNOOC has preliminarily established a chemical flooding (polymer, polymer-surfactant, weak gel, etc.) technology system including high-efficiency chemical flooding agents, platform injection facilities, and produced liquid treatment technology. Since 2003, pilot tests and field applications were carried out in S, L, and JW oil fields, and predicted oil increment and good economic benefits have been achieved, which proved that offshore chemical EOR technology is feasible and economical. It has explored a new road for increasing the recovery of offshore oil fields and provided a solid technical guarantee for their economic and efficient development.","PeriodicalId":372970,"journal":{"name":"Enhanced Oil Recovery Processes - New Technologies","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115905169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Direct Gas Thickener","authors":"N. Hinai, M. Myers, C. Wood, A. Saeedi","doi":"10.5772/intechopen.88083","DOIUrl":"https://doi.org/10.5772/intechopen.88083","url":null,"abstract":"Direct gas thickening technique has been developed to control the gas mobility in the miscible gas injection process for enhanced oil recovery. This technique involves increasing the viscosity of the injected gas by adding chemicals that exhibit good solubility in common gasses, such as CO 2 or hydrocarbon (HC) solvents. This chapter presents a review of the latest attempts to thicken CO 2 and/or hydrocarbon gases using various chemical additives, which can be broadly categorised into polymeric, conventional oligomers, and small-molecule self-interacting compounds. In an ideal situation, chemical compounds must be soluble in the dense CO 2 or hydrocarbon solvents and insoluble in both crude oil and brine at reservoir conditions. However, it has been recognised that the use of additives with extraordinary molecular weights for the above purpose would be quite challenging since most of the supercritical fluids are very stable with reduced properties as solvents due to the very low dielectric constant, lack of dipole momentum, and low density. Therefore, one way to attain adequate solubility is to elevate the system pressure and temperature because such conditions give rise to the intermolecular forces between segments or introduce functional groups that undergo self-interacting or intermolecular interactions in the oligomer molecular chains to form a viscosity-enhancing supramolecular network structure in the solution. According to this review, some of the polymers tested to date, such as polydimethylsiloxane, polyfluoroacrylate styrene, and poly(1,1-dihydroperfluorooctyl acrylate), may induce a significant increase of the solvent viscosity at high concentrations. However, the cost and environmental constraints of these materials have made the field application of these thickeners unfeasible. Until now, thickeners composed of small molecules have shown little success to thicken CO 2 , because CO 2 is a weak solvent due to its ionic and polar characteristics. However, these thickeners have resulted in promising outcomes when used in light","PeriodicalId":372970,"journal":{"name":"Enhanced Oil Recovery Processes - New Technologies","volume":"2017 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127543609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Afeez O. Gbadamosi, R. Junin, M. Manan, A. Agi, J. Oseh
{"title":"Nanotechnology Application in Chemical Enhanced Oil Recovery: Current Opinion and Recent Advances","authors":"Afeez O. Gbadamosi, R. Junin, M. Manan, A. Agi, J. Oseh","doi":"10.5772/INTECHOPEN.88140","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.88140","url":null,"abstract":"Chemical enhanced oil recovery (EOR) has been adjudged as an efficient oil recovery technique to recover bypassed oil and residual oil trapped in the reservoir. This EOR method relies on the injection of chemicals to boost oil recovery. Recently, due to the limitations of the application of chemical EOR methods to reservoirs having elevated temperatures and high salinity and hardness concentra-tions, nanotechnology have been applied to enhance its efficiency and improve oil productivity. The synergistic combination of nanoparticles and conventional EOR chemicals has opened new routes for the synthesis and application of novel materials with sterling and fascinating properties. In this chapter, an up-to-date synopsis of nanotechnology applications in chemical EOR is discussed. A detailed explana-tion of the mechanism and applications of these novel methods for oil recovery are appraised and analyzed. Finally, experimental and laboratory results were outlined. This overview presents extensive information about new frontiers in chemical EOR applications for sustainable energy production. studies were summarized and discussed. Results of various experiments shows that the incorporation of nanotechnology with chemical EOR shows good potential to improve pore scale mechanisms in the case of surfactant. Adsorption of surfactant on rock pores is inhibited while greater IFT reduction and better wettability alteration were achieved. Furthermore, nanotechnology improved the rheological properties of polymer and stability of emulsions and foams indicating the good potentials of improving sweep efficiency of injected chemicals especially in the presence of harsh reservoir conditions. Finally, future research should focus on modeling the flow behavior of nanomaterials through porous media, which is required for the designing and field implementation of nano-chemicals EOR.","PeriodicalId":372970,"journal":{"name":"Enhanced Oil Recovery Processes - New Technologies","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123108022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Potential of Low-Salinity Waterflooding Technology to Improve Oil Recovery","authors":"H. Mahmud, S. Arumugam, W. Mahmud","doi":"10.5772/intechopen.88082","DOIUrl":"https://doi.org/10.5772/intechopen.88082","url":null,"abstract":"Low-salinity waterflooding (LSWF) is a potential new method for enhanced oil recovery (EOR) in sandstone and carbonate rock formations. LSWF approach has gained an attention in the oil and gas industry due to its potential advantages over the conventional waterflooding and other chemical EOR technologies. The efficiency of waterflooding process is effected via reservoir and fluid parameters such as formation rock type, porosity, permeability, reservoir fluid saturation and distribution and optimum time of water injection. Combined effect of these factors can define the ultimate recovery of hydrocarbon. The main objective of this chapter is to review the mechanism of LSWF technique in improving oil recovery and the mechanism under which it operates. Various laboratory studies and few field applications of LSWF in recent years have been presented mainly at the lab scale. Also it will explore numerical modeling developments of this EOR approach.","PeriodicalId":372970,"journal":{"name":"Enhanced Oil Recovery Processes - New Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131140455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Setiati, S. Siregar, T. Marhaendrajana, D. Wahyuningrum
{"title":"Surfactant Flooding for EOR Using Sodium Lignosulfonate Synthesized from Bagasse","authors":"R. Setiati, S. Siregar, T. Marhaendrajana, D. Wahyuningrum","doi":"10.5772/INTECHOPEN.88689","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.88689","url":null,"abstract":"Surfactant injection is one of the types of chemical injections used in enhanced oil recovery (EOR) process. Surfactant can increase the interfacial tension between oil and water in the rock matrix. The surfactant used is an anionic surfactant, which is one of the lignosulfonate surfactants known as sodium lignosulfonate (SLS) surfactant derived from lignin. Bagasse is one of the raw materials having a high content of lignin (24–25%). The synthesized bagasse becomes lignosulfonate used as an isolation of lignin and transformed into sodium lignosulfonate by sulfonation process. Based on the characteristic test, the bagasse’s SLS surfactant has some qualified characteristics which are a good aqueous stability, clear solution and not causing turbidity, and capability to form middle-phase microemulsion with light oil. Synthesized SLS has a hydrophilic– lipophilic balance (HLB) value of 11.6 which can be classified as oil in water (O/W) emulsion. Middle-phase emulsion as a characteristic SLS surfactant affects the performance of the SLS surfactant injection. So the use of sodium lignosulfonate surfactant synthesized from bagasse is a challenge to be developed further as a surfactant flooding.","PeriodicalId":372970,"journal":{"name":"Enhanced Oil Recovery Processes - New Technologies","volume":"1 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120918719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hybrid EOR Methods Utilizing Low-Salinity Water","authors":"P. Pourafshary, N. Moradpour","doi":"10.5772/INTECHOPEN.88056","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.88056","url":null,"abstract":"Low-salinity water (LSW) flooding has been applied in sandstone and carbonate formations to improve oil recovery. Wettability alteration by LSW has been identified as the dominant driving mechanism for the incremental oil recoveries. LSW flooding has been combined with other EOR methods to develop new hybrid approaches to improve crude/brine/rock (CBR) interactions with the objective of overcoming some of the LSW flooding downsides, which include oil trapping and fine migration. Hybrid methods can provide higher oil recovery than each stand-alone technique. For instance, changes in gas solubility during LSW injection positively affect the performance of LSW/gas hybrid injection. LSW/surfactant flooding can contribute to incremental recovery by simultaneously lowering interfacial tension (IFT) and wettability alteration. The synergistic effect of fluid redistribution by LSW and enhanced water mobility by polymer flooding improves oil detachment and displacement in porous media through the application of the hybrid approach LSW/polymer flooding. Nanoparticles (NPs), mainly SiO 2 , can alter wettability toward more water wetness in combination with LSW, and hot LSW can improve heavy oil production by reducing viscosity. Hence, the synergistic effect of hybrid EOR methods based on LSW flooding is considered a novel EOR approach to improve oil recovery.","PeriodicalId":372970,"journal":{"name":"Enhanced Oil Recovery Processes - New Technologies","volume":"286 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130610757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}