N. Ramanathan, M. Yarvis, Jasmeet Chhabra, Nandakishore Kushalnagar, L. Krishnamurthy, Deborah Estrin
{"title":"A stream-oriented power management protocol for low duty cycle sensor network applications","authors":"N. Ramanathan, M. Yarvis, Jasmeet Chhabra, Nandakishore Kushalnagar, L. Krishnamurthy, Deborah Estrin","doi":"10.1109/EMNETS.2005.1469099","DOIUrl":"https://doi.org/10.1109/EMNETS.2005.1469099","url":null,"abstract":"Most power management protocols are packet-based and optimized for applications with mostly asynchronous (i.e. unexpected) traffic. We present AppSleep, a stream-oriented power management protocol for latency tolerant sensor network applications. For this class of applications, AppSleep demonstrates an over 3/spl times/ lifetime gain over B-MAC and SMAC. AppSleep leverages application characteristics in order to take advantage of periods of high latency tolerance to put the network to sleep for extended periods of time, while still facilitating low latency responses when required. AppSleep also gives applications the flexibility to efficiently and effectively trade latency for energy when desired, and enables energy efficient multi-fragment unicast communication by only keeping the active route awake. We also present Adaptive AppSleep, an application driven addition to AppSleep which supports varying latency requirements while still maximizing energy efficiency. Our evaluation demonstrates that for an overlooked class of applications, stream-oriented power management protocols such as AppSleep outperform packet-based protocols such as B-MAC and S-MAC.","PeriodicalId":371563,"journal":{"name":"The Second IEEE Workshop on Embedded Networked Sensors, 2005. EmNetS-II.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124281355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards a mobile agent framework for sensor networks","authors":"Leo Szumel, Jason LeBrun, John D. Owens","doi":"10.1109/EMNETS.2005.1469102","DOIUrl":"https://doi.org/10.1109/EMNETS.2005.1469102","url":null,"abstract":"Sensor networks of the future will continue to be characterized by extreme energy and bandwidth constraints, yet they will need to support a robust and dynamic programming environment. To support multiple applications which may change over the lifetime of the network, the programming system should allow for the deployment of new code in an efficient and on-demand fashion. Existing programming frameworks focus on providing an efficient means for reprogramming an entire network: we believe that self-directed propagation can be more efficient for applications that do not require (or would not benefit from) network-wide deployment of new code. We present and analyze a framework enabling autonomous programs (agents) capable of propagating themselves through a sensor network.","PeriodicalId":371563,"journal":{"name":"The Second IEEE Workshop on Embedded Networked Sensors, 2005. EmNetS-II.","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133278410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}