S. Shahzad, Mohammad Afzal, S. Sikandar, Imran Afzal
{"title":"Polymerase Chain Reaction","authors":"S. Shahzad, Mohammad Afzal, S. Sikandar, Imran Afzal","doi":"10.5772/intechopen.81924","DOIUrl":"https://doi.org/10.5772/intechopen.81924","url":null,"abstract":"","PeriodicalId":363571,"journal":{"name":"Genetic Engineering - A Glimpse of Techniques and Applications","volume":"98 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115163331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Singh, Trashi Singh, Ranjan Singh, R. Gaur, P. Pandey, Farrukh Jamal
{"title":"Genetic Engineering: Altering the Threads of Life","authors":"T. Singh, Trashi Singh, Ranjan Singh, R. Gaur, P. Pandey, Farrukh Jamal","doi":"10.5772/intechopen.92618","DOIUrl":"https://doi.org/10.5772/intechopen.92618","url":null,"abstract":"Over the past 30 years, the field of genetic engineering has grown in a spectacular manner. The methods involved in genetic engineering which were earlier considered cumbersome and involved sophisticated instrumentation have now became a common drill within the laboratories throughout the world. This rising technology is now involved in almost every aspect of biological research. Its application includes medical diagnosis, paternity disputes, forensic analysis, genome sequencing, etc. In the recent years, this technology has attained a large-scale attention, and now the commercial products developed using genetic engineering are known worldwide. The technique of genetic engineering is solely based on genetic information, which is encoded by the DNA in the form of genes. Through genetic engineering the genes can be introduced or manipulated within the host to develop products of value and importance, for treatment of genetic disorders, and to achieve other goals. The present chapter explains the techniques involved in genetic engineering and rDNA technology and its importance in revolutionizing different fields. The objective of this chapter is to highlight the basic principle and methodology involved in genetic engineering and its role in human welfare.","PeriodicalId":363571,"journal":{"name":"Genetic Engineering - A Glimpse of Techniques and Applications","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122854330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Ashfaq, N. Talreja, D. Chuahan, W. Srituravanich
{"title":"Polymeric Nanocomposite-Based Agriculture Delivery System: Emerging Technology for Agriculture","authors":"M. Ashfaq, N. Talreja, D. Chuahan, W. Srituravanich","doi":"10.5772/intechopen.89702","DOIUrl":"https://doi.org/10.5772/intechopen.89702","url":null,"abstract":"The increasing global population has forced the agricultural area to enhance the yield of crop, thereby fulfilling the requirements of people. The advancement has led to synthesis of nanomaterials with different size, shapes, and biocompatibility aspects towards specific applications like agriculture. Several nanomaterials such as metal, metal oxide, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, and its derivatives have shown potential ability for augmenting the yield of crops and protect crops against pathogens. However, these nanomaterials required smart delivery system that might easily deliver the nanofertilizers in a controlled manner. In this context, the incorporation of nanotechnology and polymer science might be developing newer technology with minimal usage and maximum effectiveness for improvement of crops. The incorporation of nanomaterials in polymeric composites offers newer approaches for agricultural delivery system that might provide various advantages such as higher stability, solubility, uniform distribution, and controlled release. Moreover, nanomaterials have potential ability for advancement in the genetic engineering. Herein, we discuss the role of nanomaterials in the growth of the plant, polymeric nanocomposite materials for agriculture delivery system with the advancement in the genetic engineering, and future prospects of these polymeric-nanocomposite materials in agriculture.","PeriodicalId":363571,"journal":{"name":"Genetic Engineering - A Glimpse of Techniques and Applications","volume":"178 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115208797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genome Engineering for Xenotransplantation","authors":"S. Stevens","doi":"10.5772/INTECHOPEN.84782","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.84782","url":null,"abstract":"Xenotransplantation, the transfer of cells, tissues or organs between species, has the potential to overcome the critical need for organs to treat patients. One major barrier in the widespread application of xenotransplantation in the clinic is the overwhelming rejection response that occurs when non-human organs encounter the human immune system. Recent progress in developing new and better genome engineering tools now allows the genetic engineering of genes and pathways in non-human animals to overcome the human rejection response and provide an unlimited supply of rejection-free organs. In this review, the benefits and draw-backs of various genome engineering protocols, and examples of their application in xenotransplantation, are discussed.","PeriodicalId":363571,"journal":{"name":"Genetic Engineering - A Glimpse of Techniques and Applications","volume":"123 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134577383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prospects for the Production of Recombinant Therapeutic Proteins and Peptides in Plants: Special Focus on Angiotensin I-Converting Enzyme Inhibitory (ACEI) Peptides","authors":"C. Gomes, Filipe Oliveira, S. Vieira, A. S. Duque","doi":"10.5772/INTECHOPEN.84419","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.84419","url":null,"abstract":"Molecular pharming is a cost-effective, scalable, and safe system to produce high-quality and biologically active recombinant therapeutic proteins. Thus, plants are emerging alternative platform for the production of pharmaceutically relevant proteins such as vaccines, antibodies, antibody derivatives, and some serum-derived proteins. Additionally, plants have also been used to produce bioactive and immunogenic peptides. The efficacy, selectivity, specificity, and low toxicity make them particularly well-suited therapeutic agents for various indications, for instance, cardiovascular and infectious diseases, immunological disorders, and cancer. In the broad range of known bioactive peptides, angiotensin I-converting enzyme inhibitory (ACEI) peptides derived from food proteins have attracted particular attention for their ability to prevent hypertension. So far, several ACEI peptides have been identified in food proteins, mainly in milk, eggs, and plants. The industrial production of ACEI peptides is based on enzymatic proteolysis of whole food proteins, which leads to the release of small bioactive peptides with ACE-inhibitory activity. The problems associated to such procedures, namely, cost and loss of functional properties, have demonstrated the need to develop more straightforward methods to produce ACEI peptides. One viable hypothesis, discussed in this chapter, is to genetically engineer crop plants to produce and deliver antihypertensive peptides.","PeriodicalId":363571,"journal":{"name":"Genetic Engineering - A Glimpse of Techniques and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128704090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}