M. Ashfaq, N. Talreja, D. Chuahan, W. Srituravanich
{"title":"基于聚合物纳米复合材料的农业输送系统:新兴农业技术","authors":"M. Ashfaq, N. Talreja, D. Chuahan, W. Srituravanich","doi":"10.5772/intechopen.89702","DOIUrl":null,"url":null,"abstract":"The increasing global population has forced the agricultural area to enhance the yield of crop, thereby fulfilling the requirements of people. The advancement has led to synthesis of nanomaterials with different size, shapes, and biocompatibility aspects towards specific applications like agriculture. Several nanomaterials such as metal, metal oxide, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, and its derivatives have shown potential ability for augmenting the yield of crops and protect crops against pathogens. However, these nanomaterials required smart delivery system that might easily deliver the nanofertilizers in a controlled manner. In this context, the incorporation of nanotechnology and polymer science might be developing newer technology with minimal usage and maximum effectiveness for improvement of crops. The incorporation of nanomaterials in polymeric composites offers newer approaches for agricultural delivery system that might provide various advantages such as higher stability, solubility, uniform distribution, and controlled release. Moreover, nanomaterials have potential ability for advancement in the genetic engineering. Herein, we discuss the role of nanomaterials in the growth of the plant, polymeric nanocomposite materials for agriculture delivery system with the advancement in the genetic engineering, and future prospects of these polymeric-nanocomposite materials in agriculture.","PeriodicalId":363571,"journal":{"name":"Genetic Engineering - A Glimpse of Techniques and Applications","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Polymeric Nanocomposite-Based Agriculture Delivery System: Emerging Technology for Agriculture\",\"authors\":\"M. Ashfaq, N. Talreja, D. Chuahan, W. Srituravanich\",\"doi\":\"10.5772/intechopen.89702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing global population has forced the agricultural area to enhance the yield of crop, thereby fulfilling the requirements of people. The advancement has led to synthesis of nanomaterials with different size, shapes, and biocompatibility aspects towards specific applications like agriculture. Several nanomaterials such as metal, metal oxide, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, and its derivatives have shown potential ability for augmenting the yield of crops and protect crops against pathogens. However, these nanomaterials required smart delivery system that might easily deliver the nanofertilizers in a controlled manner. In this context, the incorporation of nanotechnology and polymer science might be developing newer technology with minimal usage and maximum effectiveness for improvement of crops. The incorporation of nanomaterials in polymeric composites offers newer approaches for agricultural delivery system that might provide various advantages such as higher stability, solubility, uniform distribution, and controlled release. Moreover, nanomaterials have potential ability for advancement in the genetic engineering. Herein, we discuss the role of nanomaterials in the growth of the plant, polymeric nanocomposite materials for agriculture delivery system with the advancement in the genetic engineering, and future prospects of these polymeric-nanocomposite materials in agriculture.\",\"PeriodicalId\":363571,\"journal\":{\"name\":\"Genetic Engineering - A Glimpse of Techniques and Applications\",\"volume\":\"178 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Engineering - A Glimpse of Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.89702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Engineering - A Glimpse of Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.89702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polymeric Nanocomposite-Based Agriculture Delivery System: Emerging Technology for Agriculture
The increasing global population has forced the agricultural area to enhance the yield of crop, thereby fulfilling the requirements of people. The advancement has led to synthesis of nanomaterials with different size, shapes, and biocompatibility aspects towards specific applications like agriculture. Several nanomaterials such as metal, metal oxide, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, and its derivatives have shown potential ability for augmenting the yield of crops and protect crops against pathogens. However, these nanomaterials required smart delivery system that might easily deliver the nanofertilizers in a controlled manner. In this context, the incorporation of nanotechnology and polymer science might be developing newer technology with minimal usage and maximum effectiveness for improvement of crops. The incorporation of nanomaterials in polymeric composites offers newer approaches for agricultural delivery system that might provide various advantages such as higher stability, solubility, uniform distribution, and controlled release. Moreover, nanomaterials have potential ability for advancement in the genetic engineering. Herein, we discuss the role of nanomaterials in the growth of the plant, polymeric nanocomposite materials for agriculture delivery system with the advancement in the genetic engineering, and future prospects of these polymeric-nanocomposite materials in agriculture.