Computing and Software for Big Science最新文献

筛选
英文 中文
GNN for Deep Full Event Interpretation and Hierarchical Reconstruction of Heavy-Hadron Decays in Proton-Proton Collisions. 质子-质子碰撞中重强子衰变的深度全事件解释和分层重建的GNN。
Computing and Software for Big Science Pub Date : 2023-01-01 Epub Date: 2023-11-17 DOI: 10.1007/s41781-023-00107-8
Julián García Pardiñas, Marta Calvi, Jonas Eschle, Andrea Mauri, Simone Meloni, Martina Mozzanica, Nicola Serra
{"title":"GNN for Deep Full Event Interpretation and Hierarchical Reconstruction of Heavy-Hadron Decays in Proton-Proton Collisions.","authors":"Julián García Pardiñas, Marta Calvi, Jonas Eschle, Andrea Mauri, Simone Meloni, Martina Mozzanica, Nicola Serra","doi":"10.1007/s41781-023-00107-8","DOIUrl":"10.1007/s41781-023-00107-8","url":null,"abstract":"<p><p>The LHCb experiment at the Large Hadron Collider (LHC) is designed to perform high-precision measurements of heavy-hadron decays, which requires the collection of large data samples and a good understanding and suppression of multiple background sources. Both factors are challenged by a fivefold increase in the average number of proton-proton collisions per bunch crossing, corresponding to a change in the detector operation conditions for the LHCb Upgrade I phase, recently started. A further tenfold increase is expected in the Upgrade II phase, planned for the next decade. The limits in the storage capacity of the trigger will bring an inverse relationship between the number of particles selected to be stored per event and the number of events that can be recorded. In addition the background levels will rise due to the enlarged combinatorics. To tackle both challenges, we propose a novel approach, never attempted before in a hadronic collider: a Deep-learning based Full Event Interpretation (DFEI), to perform the simultaneous identification, isolation and hierarchical reconstruction of all the heavy-hadron decay chains per event. This strategy radically contrasts with the standard selection procedure used in LHCb to identify heavy-hadron decays, that looks individually at subsets of particles compatible with being products of specific decay types, disregarding the contextual information from the rest of the event. Following the DFEI approach, once the relevant particles in each event are identified, the rest can be safely removed to optimise the storage space and maximise the trigger efficiency. We present the first prototype for the DFEI algorithm, that leverages the power of Graph Neural Networks (GNN). This paper describes the design and development of the algorithm, and its performance in Upgrade I simulated conditions.</p>","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":"7 1","pages":"12"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656322/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138463149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The ATLAS EventIndex ATLAS事件索引
Computing and Software for Big Science Pub Date : 2022-11-15 DOI: 10.1007/s41781-023-00096-8
D. Barberis, I. Alexandrov, E. Alexandrov, Z. Baranowski, L. Canali, E. Cherepanova, G. Dimitrov, A. Favareto, Alvaro Fernandez Casani, E. Gallas, Carlos García-Montoro, S. G. Hoz, J. Hrivnac, Alexander Iakovlev, A. Kazymov, M. Mineev, F. Prokoshin, G. Rybkin, J. Salt, Javier Sánchez, R. Sorokoletov, Rainer Töebbicke, P. Vasileva, M. V. Perez, Ruijun Yuan
{"title":"The ATLAS EventIndex","authors":"D. Barberis, I. Alexandrov, E. Alexandrov, Z. Baranowski, L. Canali, E. Cherepanova, G. Dimitrov, A. Favareto, Alvaro Fernandez Casani, E. Gallas, Carlos García-Montoro, S. G. Hoz, J. Hrivnac, Alexander Iakovlev, A. Kazymov, M. Mineev, F. Prokoshin, G. Rybkin, J. Salt, Javier Sánchez, R. Sorokoletov, Rainer Töebbicke, P. Vasileva, M. V. Perez, Ruijun Yuan","doi":"10.1007/s41781-023-00096-8","DOIUrl":"https://doi.org/10.1007/s41781-023-00096-8","url":null,"abstract":"","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":"7 1","pages":"1-21"},"PeriodicalIF":0.0,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45106509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Analyzing WLCG File Transfer Errors Through Machine Learning 通过机器学习分析WLCG文件传输错误
Computing and Software for Big Science Pub Date : 2022-10-22 DOI: 10.1007/s41781-022-00089-z
L. Clissa, M. Lassnig, L. Rinaldi
{"title":"Analyzing WLCG File Transfer Errors Through Machine Learning","authors":"L. Clissa, M. Lassnig, L. Rinaldi","doi":"10.1007/s41781-022-00089-z","DOIUrl":"https://doi.org/10.1007/s41781-022-00089-z","url":null,"abstract":"","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":"6 1","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41782342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
When, Where, and How to Open Data: a Personal Perspective 何时、何地以及如何开放数据:个人视角
Computing and Software for Big Science Pub Date : 2022-08-16 DOI: 10.1007/s41781-022-00090-6
B. Nachman
{"title":"When, Where, and How to Open Data: a Personal Perspective","authors":"B. Nachman","doi":"10.1007/s41781-022-00090-6","DOIUrl":"https://doi.org/10.1007/s41781-022-00090-6","url":null,"abstract":"","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":"6 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48921111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Fast Columnar Physics Analyses of Terabyte-Scale LHC Data on a Cache-Aware Dask Cluster 缓存感知Dask集群上tb级LHC数据的快速柱状物理分析
Computing and Software for Big Science Pub Date : 2022-07-18 DOI: 10.1007/s41781-023-00095-9
Niclas Eich, M. Erdmann, P. Fackeldey, B. Fischer, D. Noll, Y. Rath
{"title":"Fast Columnar Physics Analyses of Terabyte-Scale LHC Data on a Cache-Aware Dask Cluster","authors":"Niclas Eich, M. Erdmann, P. Fackeldey, B. Fischer, D. Noll, Y. Rath","doi":"10.1007/s41781-023-00095-9","DOIUrl":"https://doi.org/10.1007/s41781-023-00095-9","url":null,"abstract":"","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":"7 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47040705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Modelling Large-Scale Scientific Data Transfers 大规模科学数据传输建模
Computing and Software for Big Science Pub Date : 2022-07-06 DOI: 10.1007/s41781-022-00084-4
J. Bogado, M. Lassnig, F. Monticelli, Javier Díaz
{"title":"Modelling Large-Scale Scientific Data Transfers","authors":"J. Bogado, M. Lassnig, F. Monticelli, Javier Díaz","doi":"10.1007/s41781-022-00084-4","DOIUrl":"https://doi.org/10.1007/s41781-022-00084-4","url":null,"abstract":"","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45828386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Cait: Analysis Toolkit for Cryogenic Particle Detectors in Python Cait:Python中的低温粒子探测器分析工具包
Computing and Software for Big Science Pub Date : 2022-07-05 DOI: 10.1007/s41781-022-00092-4
F. Wagner, D. Bartolot, Damir Rizvanovic, F. Reindl, J. Schieck, W. Waltenberger
{"title":"Cait: Analysis Toolkit for Cryogenic Particle Detectors in Python","authors":"F. Wagner, D. Bartolot, Damir Rizvanovic, F. Reindl, J. Schieck, W. Waltenberger","doi":"10.1007/s41781-022-00092-4","DOIUrl":"https://doi.org/10.1007/s41781-022-00092-4","url":null,"abstract":"","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":"6 1","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47108258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Future Trends in Nuclear Physics Computing 核物理计算的未来趋势
Computing and Software for Big Science Pub Date : 2022-06-22 DOI: 10.1007/s41781-022-00085-3
M. Diefenthaler, T. Wenaus
{"title":"Future Trends in Nuclear Physics Computing","authors":"M. Diefenthaler, T. Wenaus","doi":"10.1007/s41781-022-00085-3","DOIUrl":"https://doi.org/10.1007/s41781-022-00085-3","url":null,"abstract":"","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41631587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Simulation of Dielectric Axion Haloscopes with Deep Neural Networks: A Proof-of-Principle 用深度神经网络模拟介电轴子光镜:原理证明
Computing and Software for Big Science Pub Date : 2022-06-01 DOI: 10.1007/s41781-022-00091-5
Philipp Alexander Jung, Bernardo Ary dos Santos, Dominik Bergermann, Tim Graulich, Maximilian Lohmann, A. Novák, Erdem Öz, Ali Riahinia, A. Schmidt
{"title":"Simulation of Dielectric Axion Haloscopes with Deep Neural Networks: A Proof-of-Principle","authors":"Philipp Alexander Jung, Bernardo Ary dos Santos, Dominik Bergermann, Tim Graulich, Maximilian Lohmann, A. Novák, Erdem Öz, Ali Riahinia, A. Schmidt","doi":"10.1007/s41781-022-00091-5","DOIUrl":"https://doi.org/10.1007/s41781-022-00091-5","url":null,"abstract":"","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":"6 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44195946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Computational Challenges for Multi-loop Collider Phenomenology 多回路对撞机现象学的计算挑战
Computing and Software for Big Science Pub Date : 2022-04-08 DOI: 10.1007/s41781-022-00088-0
F. Cordero, A. von Manteuffel, T. Neumann
{"title":"Computational Challenges for Multi-loop Collider Phenomenology","authors":"F. Cordero, A. von Manteuffel, T. Neumann","doi":"10.1007/s41781-022-00088-0","DOIUrl":"https://doi.org/10.1007/s41781-022-00088-0","url":null,"abstract":"","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45177946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信