{"title":"The Case for Medical Device Cybersecurity Hygiene Practices for Frontline Personnel.","authors":"S. Grimes, Axel Wirth","doi":"10.2345/0890-8205-55.3.96","DOIUrl":"https://doi.org/10.2345/0890-8205-55.3.96","url":null,"abstract":"","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":"55 3 1","pages":"96-99"},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42824860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joan C. Brown, Manas Bhatnagar, Hugh Gordon, K. Lutrick, Jared Goodner, James Blum, Raquel R Bartz, D. Uslan, Ernesto David-DiMarino, A. Sorbello, Gregory H. Jackson, Jeremy Walsh, Lauren Neal, Marek Cyran, H. Francis, J. Cobb
{"title":"Clinical Data Extraction During Public Health Emergencies: A Blockchain Technology Assessment.","authors":"Joan C. Brown, Manas Bhatnagar, Hugh Gordon, K. Lutrick, Jared Goodner, James Blum, Raquel R Bartz, D. Uslan, Ernesto David-DiMarino, A. Sorbello, Gregory H. Jackson, Jeremy Walsh, Lauren Neal, Marek Cyran, H. Francis, J. Cobb","doi":"10.2345/0890-8205-55.3.103","DOIUrl":"https://doi.org/10.2345/0890-8205-55.3.103","url":null,"abstract":"OBJECTIVE\u0000We sought to explore the technical and legal readiness of healthcare institutions for novel data-sharing methods that allow clinical information to be extracted from electronic health records (EHRs) and submitted securely to the Food and Drug Administration's (FDA's) blockchain through a secure data broker (SDB).\u0000\u0000\u0000MATERIALS AND METHODS\u0000This assessment was divided into four sections: an institutional EHR readiness assessment, legal consultation, institutional review board application submission, and a test of healthcare data transmission over a blockchain infrastructure.\u0000\u0000\u0000RESULTS\u0000All participating institutions reported the ability to electronically extract data from EHRs for research. Formal legal agreements were deemed unnecessary to the project but would be needed in future tests of real patient data exchange. Data transmission to the FDA blockchain met the success criteria of data connection from within the four institutions' firewalls, externally to the FDA blockchain via a SDB.\u0000\u0000\u0000DISCUSSION\u0000The readiness survey indicated advanced analytic capability in hospital institutions and highlighted inconsistency in Fast Healthcare Interoperability Resources format utilitzation across institutions, despite requirements of the 21st Century Cures Act. Further testing across more institutions and annual exercises leveraging the application of data exchange over a blockchain infrastructure are recommended actions for determining the feasibility of this approach during a public health emergency and broaden the understanding of technical requirements for multisite data extraction.\u0000\u0000\u0000CONCLUSION\u0000The FDA's RAPID (Real-Time Application for Portable Interactive Devices) program, in collaboration with Discovery, the Critical Care Research Network's PREP (Program for Resilience and Emergency Preparedness), identified the technical and legal challenges and requirements for rapid data exchange to a government entity using the FDA blockchain infrastructure.","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":"55 3 1","pages":"103-111"},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45958025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determining EMC Test Levels for Implantable Devices in Bipolar Lead Configuration.","authors":"Seth J Seidman, Howard I Bassen","doi":"10.2345/0899-8205-55.3.91","DOIUrl":"https://doi.org/10.2345/0899-8205-55.3.91","url":null,"abstract":"<p><p>Certain low-frequency magnetic fields cause interference in implantable medical devices. Electromagnetic compatibility (EMC) standards prescribe injecting voltages into a device under evaluation to simplify testing while approximating or simulating real-world exposure situations to low-frequency magnetic fields. The EMC standard ISO 14117:2012, which covers implantable pacemakers and implantable cardioverter defibrillators (ICDs), specifies test levels for the bipolar configuration of sensing leads as being one-tenth of the levels for the unipolar configuration. The committee authoring this standard questioned this testing level difference and its clinical relevance. To evaluate this issue of EMC test levels, we performed both analytical calculations and computational modeling to determine a basis for this difference. Analytical calculations based upon Faraday's law determined the magnetically induced voltage in a 37.6-cm lead. Induced voltages were studied in a bipolar lead configuration with various spacing between a distal tip electrode and a ring electrode. Voltages induced in this bipolar lead configuration were compared with voltages induced in a unipolar lead configuration. Computational modeling of various lead configurations was performed using electromagnetic field simulation software. The two leads that were insulated, except for the distal and proximal tips, were immersed in a saline-conducting media. The leads were parallel and closely spaced to each other along their length. Both analytical calculations and computational modeling support continued use of a one-tenth amplitude reduction for testing pacemakers and ICDs in bipolar mode. The most recent edition of ISO 14117 includes rationale from this study.</p>","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":"55 3","pages":"91-95"},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8657841/pdf/i0899-8205-55-3-91.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39199496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joan Brown, Manas Bhatnagar, Hugh Gordon, Karen Lutrick, Jared Goodner, James Blum, Raquel Bartz, Daniel Uslan, Ernesto David-DiMarino, Alfred Sorbello, Gregory Jackson, Jeremy Walsh, Lauren Neal, Marek Cyran, Henry Francis, J Perren Cobb
{"title":"Clinical Data Extraction During Public Health Emergencies: A Blockchain Technology Assessment.","authors":"Joan Brown, Manas Bhatnagar, Hugh Gordon, Karen Lutrick, Jared Goodner, James Blum, Raquel Bartz, Daniel Uslan, Ernesto David-DiMarino, Alfred Sorbello, Gregory Jackson, Jeremy Walsh, Lauren Neal, Marek Cyran, Henry Francis, J Perren Cobb","doi":"10.2345/0899-8205-55.3.103","DOIUrl":"https://doi.org/10.2345/0899-8205-55.3.103","url":null,"abstract":"<p><strong>Objective: </strong>We sought to explore the technical and legal readiness of healthcare institutions for novel data-sharing methods that allow clinical information to be extracted from electronic health records (EHRs) and submitted securely to the Food and Drug Administration's (FDA's) blockchain through a secure data broker (SDB).</p><p><strong>Materials and methods: </strong>This assessment was divided into four sections: an institutional EHR readiness assessment, legal consultation, institutional review board application submission, and a test of healthcare data transmission over a blockchain infrastructure.</p><p><strong>Results: </strong>All participating institutions reported the ability to electronically extract data from EHRs for research. Formal legal agreements were deemed unnecessary to the project but would be needed in future tests of real patient data exchange. Data transmission to the FDA blockchain met the success criteria of data connection from within the four institutions' firewalls, externally to the FDA blockchain via a SDB.</p><p><strong>Discussion: </strong>The readiness survey indicated advanced analytic capability in hospital institutions and highlighted inconsistency in Fast Healthcare Interoperability Resources format utilitzation across institutions, despite requirements of the 21st Century Cures Act. Further testing across more institutions and annual exercises leveraging the application of data exchange over a blockchain infrastructure are recommended actions for determining the feasibility of this approach during a public health emergency and broaden the understanding of technical requirements for multisite data extraction.</p><p><strong>Conclusion: </strong>The FDA's RAPID (Real-Time Application for Portable Interactive Devices) program, in collaboration with Discovery, the Critical Care Research Network's PREP (Program for Resilience and Emergency Preparedness), identified the technical and legal challenges and requirements for rapid data exchange to a government entity using the FDA blockchain infrastructure.</p>","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":"55 3","pages":"103-111"},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8657842/pdf/i0899-8205-55-3-103.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39369990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of Innovative Pulse Oximeter Sensor Management Strategy.","authors":"Allan G Palmer","doi":"10.2345/0899-8205-55.2.59","DOIUrl":"https://doi.org/10.2345/0899-8205-55.2.59","url":null,"abstract":"<p><strong>Background: </strong>Following a merger of two children's hospitals, leadership discovered a considerable utilization volume of single-use sensors that was associated with declining hospital reimbursements. This discovery resulted in the establishment of a new sensor management strategy, the goal of which was to decrease costs and waste associated with disposable pulse oximetry sensors.</p><p><strong>Implementation: </strong>The sensor management strategy involved using replacement tapes with single-patient-use pulse oximeter sensors instead of the current practice of reprobing with a new sensor. A 60% utilization goal was set, with the focus shifted from sensors used per patient to replacement tapes per sensor.</p><p><strong>Results: </strong>The implementation of a new sensor management strategy between the years 2006 and 2019 in a hospital system decreased sensor volume by more than 780,000 sensors and realized a cost avoidance of more than 7 million dollars.</p><p><strong>Conclusion: </strong>A sensor management strategy can substantially reduce the cost and medical waste commonly associated with the use of disposable, single-patient pulse oximetry sensors.</p>","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":"55 2","pages":"59-62"},"PeriodicalIF":0.0,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641413/pdf/i0899-8205-55-2-59.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39005999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of Innovative Pulse Oximeter Sensor Management Strategy.","authors":"A. Palmer","doi":"10.2345/0890-8205-55.2.59","DOIUrl":"https://doi.org/10.2345/0890-8205-55.2.59","url":null,"abstract":"BACKGROUND\u0000Following a merger of two children's hospitals, leadership discovered a considerable utilization volume of single-use sensors that was associated with declining hospital reimbursements. This discovery resulted in the establishment of a new sensor management strategy, the goal of which was to decrease costs and waste associated with disposable pulse oximetry sensors.\u0000\u0000\u0000IMPLEMENTATION\u0000The sensor management strategy involved using replacement tapes with single-patient-use pulse oximeter sensors instead of the current practice of reprobing with a new sensor. A 60% utilization goal was set, with the focus shifted from sensors used per patient to replacement tapes per sensor.\u0000\u0000\u0000RESULTS\u0000The implementation of a new sensor management strategy between the years 2006 and 2019 in a hospital system decreased sensor volume by more than 780,000 sensors and realized a cost avoidance of more than 7 million dollars.\u0000\u0000\u0000CONCLUSION\u0000A sensor management strategy can substantially reduce the cost and medical waste commonly associated with the use of disposable, single-patient pulse oximetry sensors.","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":" ","pages":"59-62"},"PeriodicalIF":0.0,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47013970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Helin Räägel, Audrey P. Turley, Trevor Fish, Jeralyn J. Franson, Thor S Rollins, Sarah Campbell, Matthew R Jorgensen
{"title":"Medical Device Industry Approaches for Addressing Sources of Failing Cytotoxicity Scores.","authors":"Helin Räägel, Audrey P. Turley, Trevor Fish, Jeralyn J. Franson, Thor S Rollins, Sarah Campbell, Matthew R Jorgensen","doi":"10.2345/0890-8205-55.2.69","DOIUrl":"https://doi.org/10.2345/0890-8205-55.2.69","url":null,"abstract":"To ensure patient safety, medical device manufacturers are required by the Food and Drug Administration and other regulatory bodies to perform biocompatibility evaluations on their devices per standards, such as the AAMI-approved ISO 10993-1:2018 (ANSI/AAMI/ISO 10993-1:2018).However, some of these biological tests (e.g., systemic toxicity studies) have long lead times and are costly, which may hinder the release of new medical devices. In recent years, an alternative method using a risk-based approach for evaluating the toxicity (or biocompatibility) profile of chemicals and materials used in medical devices has become more mainstream. This approach is used as a complement to or substitute for traditional testing methods (e.g., systemic toxicity endpoints). Regardless of the approach, the one test still used routinely in initial screening is the cytotoxicity test, which is based on an in vitro cell culture system to evaluate potential biocompatibility effects of the final finished form of a medical device. However, it is known that this sensitive test is not always compatible with specific materials and can lead to failing cytotoxicity scores and an incorrect assumption of potential biological or toxicological adverse effects. This article discusses the common culprits of in vitro cytotoxicity failures, as well as describes the regulatory-approved methodology for cytotoxicity testing and the approach of using toxicological risk assessment to address clinical relevance of cytotoxicity failures for medical devices. Further, discrepancies among test results from in vitro tests, use of published half-maximal inhibitory concentration data, and the derivation of their relationship to tolerable exposure limits, reference doses, or no observed adverse effect levels are highlighted to demonstrate that although cytotoxicity tests in general are regarded as a useful sensitive screening assays, specific medical device materials are not compatible with these cellular/in vitro systems. For these cases, the results should be analyzed using more clinically relevant approaches (e.g., through chemical analysis or written risk assessment).","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":"55 2 1","pages":"69-84"},"PeriodicalIF":0.0,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43377618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Light for a Potentially Cloudy Situation: Approach to Validating Cloud Computing Tools.","authors":"Michelle Miller, Nicola Zaccheddu","doi":"10.2345/0890-8205-55.2.63","DOIUrl":"https://doi.org/10.2345/0890-8205-55.2.63","url":null,"abstract":"","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":" ","pages":"63-68"},"PeriodicalIF":0.0,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44040968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Helin Räägel, Audrey Turley, Trevor Fish, Jeralyn Franson, Thor Rollins, Sarah Campbell, Matthew R Jorgensen
{"title":"Medical Device Industry Approaches for Addressing Sources of Failing Cytotoxicity Scores.","authors":"Helin Räägel, Audrey Turley, Trevor Fish, Jeralyn Franson, Thor Rollins, Sarah Campbell, Matthew R Jorgensen","doi":"10.2345/0899-8205-55.2.69","DOIUrl":"https://doi.org/10.2345/0899-8205-55.2.69","url":null,"abstract":"<p><p>To ensure patient safety, medical device manufacturers are required by the Food and Drug Administration and other regulatory bodies to perform biocompatibility evaluations on their devices per standards, such as the AAMI-approved ISO 10993-1:2018 (ANSI/AAMI/ISO 10993-1:2018).However, some of these biological tests (e.g., systemic toxicity studies) have long lead times and are costly, which may hinder the release of new medical devices. In recent years, an alternative method using a risk-based approach for evaluating the toxicity (or biocompatibility) profile of chemicals and materials used in medical devices has become more mainstream. This approach is used as a complement to or substitute for traditional testing methods (e.g., systemic toxicity endpoints). Regardless of the approach, the one test still used routinely in initial screening is the cytotoxicity test, which is based on an in vitro cell culture system to evaluate potential biocompatibility effects of the final finished form of a medical device. However, it is known that this sensitive test is not always compatible with specific materials and can lead to failing cytotoxicity scores and an incorrect assumption of potential biological or toxicological adverse effects. This article discusses the common culprits of in vitro cytotoxicity failures, as well as describes the regulatory-approved methodology for cytotoxicity testing and the approach of using toxicological risk assessment to address clinical relevance of cytotoxicity failures for medical devices. Further, discrepancies among test results from in vitro tests, use of published half-maximal inhibitory concentration data, and the derivation of their relationship to tolerable exposure limits, reference doses, or no observed adverse effect levels are highlighted to demonstrate that although cytotoxicity tests in general are regarded as a useful sensitive screening assays, specific medical device materials are not compatible with these cellular/in vitro systems. For these cases, the results should be analyzed using more clinically relevant approaches (e.g., through chemical analysis or written risk assessment).</p>","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":"55 2","pages":"69-84"},"PeriodicalIF":0.0,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641414/pdf/i0899-8205-55-2-69.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38942926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}