Qiang Zhang, Xianguang Zha, Junying Wu, L. Zhang, Wei Dai, Gang Ren, Shiqian Li, Ning Ji, Xiang Zhu, Fengwei Tian
{"title":"PSO-LSSVM-based Online SOC Estimation for Simulation Substation Battery","authors":"Qiang Zhang, Xianguang Zha, Junying Wu, L. Zhang, Wei Dai, Gang Ren, Shiqian Li, Ning Ji, Xiang Zhu, Fengwei Tian","doi":"10.32604/sdhm.2022.018422","DOIUrl":"https://doi.org/10.32604/sdhm.2022.018422","url":null,"abstract":"","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69903534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inverse Load Identification in Stiffened Plate Structure Based on in situ Strain Measurement","authors":"Yihua H. Wang, Zhenhuan Zhou, Hao Xu, Shuai Li, Zhanjun Wu","doi":"10.32604/SDHM.2021.014256","DOIUrl":"https://doi.org/10.32604/SDHM.2021.014256","url":null,"abstract":"For practical engineering structures, it is usually difficult to measure external load distribution in a direct manner, which makes inverse load identification important. Specifically, load identification is a typical inverse problem, for which the models (e.g., response matrix) are often ill-posed, resulting in degraded accuracy and impaired noise immunity of load identification. This study aims at identifying external loads in a stiffened plate structure, through comparing the effectiveness of different methods for parameter selection in regulation problems, including the Generalized Cross Validation (GCV) method, the Ordinary Cross Validation method and the truncated singular value decomposition method. With demonstrated high accuracy, the GCV method is used to identify concentrated loads in three different directions (e.g., vertical, lateral and longitudinal) exerted on a stiffened plate. The results show that the GCV method is able to effectively identify multi-source static loads, with relative errors less than 5%. Moreover, under the situation of swept frequency excitation, when the excitation frequency is near the natural frequency of the structure, the GCV method can achieve much higher accuracy compared with direct inversion. At other excitation frequencies, the average recognition error of the GCV method load identification less than 10%.","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69902508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fatigue Crack Detection in Steel Plates Using Guided Waves and an Energy-Based Imaging Approach","authors":"Mingyu Lu, Kaige Zhu, Qiang Wang","doi":"10.32604/sdhm.2021.017720","DOIUrl":"https://doi.org/10.32604/sdhm.2021.017720","url":null,"abstract":"The increasing use of ultrasonic guided waves (GWs) has been shown to have great potential for the detection of fatigue cracks and non-fatigue type damages in metallic structures. This paper reports on a study demonstrating an energy-based damage imaging approach in which signal characteristics identified through relative time differences by fatigue crack (RTD/f) through different sensor paths are used to estimate the location of fatigue crack in steel plates based on GWs generated by an active piezoceramic transducer (PZT) network. The propagation of GWs in the original 10 mm-thick plate was complicated due to its thick geometry, wave dispersion, boundary reflection and the existing boundary notch used to initiate the fatigue crack, resulting in diverse forms of interference with fatigue crack identification. Hence, RTD/fs were extracted from the wave energy spectrum with the aid of a wavelet transform (WT) and a correlation function. The series of tests carried out in this study include a fatigue test in which a fatigue crack was introduced to the steel plate, in addition to subsequent tensile and compressive tests designed to investigate the effect of loading on wave signals. Simultaneously, the proposed method was verified by finite element analysis and good agreement was obtained between the numerical and experimental results using the developed fatigue crack model. The results show that fatigue cracks can scatter GWs via discontinuous contact between crack surfaces under cyclic fatigue loadings, thus demonstrating the effectiveness of the proposed method for the real-time monitoring of fatigue cracks in metallic structures.","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69903345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xueping Fan, Guang-Hui Yang, Zhipeng Shang, Xiaoxiong Zhao, Yuefei Liu
{"title":"Data Fusion about Serviceability Reliability Prediction for the Long-Span Bridge Girder Based on MBDLM and Gaussian Copula Technique","authors":"Xueping Fan, Guang-Hui Yang, Zhipeng Shang, Xiaoxiong Zhao, Yuefei Liu","doi":"10.32604/SDHM.2021.011922","DOIUrl":"https://doi.org/10.32604/SDHM.2021.011922","url":null,"abstract":"This article presented a new data fusion approach for reasonably predicting dynamic serviceability reliability of the long-span bridge girder. Firstly, multivariate Bayesian dynamic linear model (MBDLM) considering dynamic correlation among the multiple variables is provided to predict dynamic extreme deflections; secondly, with the proposed MBDLM, the dynamic correlation coefficients between any two performance functions can be predicted; finally, based on MBDLM and Gaussian copula technique, a new data fusion method is given to predict the serviceability reliability of the long-span bridge girder, and the monitoring extreme deflection data from an actual bridge is provided to illustrated the feasibility and application of the proposed method.","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"79 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69902448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Lead-Rubber Bearing Isolators in Reducing Seismic Damage for a High-Rise Building in Comparison with Normal Shear Wall System","authors":"M. Fakih, J. Hallal, H. Darwich, H. Damerji","doi":"10.32604/sdhm.2021.015174","DOIUrl":"https://doi.org/10.32604/sdhm.2021.015174","url":null,"abstract":"Seismic earthquakes are a real danger for the construction evolution of high rise buildings. The rate of earthquakes around the world is noteworthy in a wide range of construction areas. In this study, we present the dynamic behavior of a high-rise RC building with dynamic isolators (lead-rubber-bearing), in comparison with a traditional shear wall system of the same building. Seismic isolation has been introduced in building construction to increase the structural stability and to protect the non-structural components against the damaging effects of an earthquake. In order to clarify the influence of incorporating lead rubber bearing isolators in the seismic response and in reducing seismic damages; a comparative study is performed between a fixed base system (shear wall system) and an isolated base system (Lead Rubber Bearing) on an irregular high rise reinforced concrete (RC) building located in Beirut consisting of 48 storeys almost asymmetric orthogonally. For this purpose, a non-linear analysis of a real earthquake acceleration record (EI Centro seismic signal) is conducted, so that the mode shapes, the damping ratio and the natural frequencies of the two models are obtained using ETABS software. The results prove a substantial elongation of the building period, as well as a reduction in the building displacement, the roof acceleration, the inter-storey drift ratio and the base shear force of isolated building relative to fixed-base building. This study proves that this technology is applicable to high rise buildings with acceptable results.","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69902686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of Unbalance on Classification Accuracy of Tyre Pressure Monitoring System Using Vibration Signals","authors":"P. Anoop, P. Nair, V. Sugumaran","doi":"10.32604/sdhm.2021.06656","DOIUrl":"https://doi.org/10.32604/sdhm.2021.06656","url":null,"abstract":"Tyre Pressure Monitoring Systems (TPMS) are installed in automobiles to monitor the pressure of the tyres. Tyre pressure is an important parameter for the comfort of the travelers and the safety of the passengers. Many methods have been researched and reported for TPMS. Amongst them, vibration-based indirect TPMS using machine learning techniques are the recent ones. The literature reported the results for a perfectly balanced wheel. However, if there is a small unbalance, which is very common in automobile wheels, ‘What will be the effect on the classification accuracy?’ is the question on hand. This paper attempts to study the effect of unbalance of the wheel on the classification accuracy of an indirect TPMS system. The tyres filled with air are considered with different pressure values to represent puncture, normal, under pressure and overpressure conditions. The vibration signals of each condition were acquired and processed using machine learning techniques. The procedure is carried out with perfectly balanced wheels and known unbalanced wheels. The results are compared and presented.","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69903367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessment of Seismic Damage in Nativity Church in Bethlehem Using Pushover Analysis","authors":"Belal Almassri, Ali A. Safiyeh","doi":"10.32604/sdhm.2021.016889","DOIUrl":"https://doi.org/10.32604/sdhm.2021.016889","url":null,"abstract":"","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69902650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Hui, F. Hraib, M. Rahman, Miguel Vicente, R. Hindi
{"title":"Sub-1 GHz Network-Based Wireless Bridge-Monitoring System: Feature and Verification","authors":"Li Hui, F. Hraib, M. Rahman, Miguel Vicente, R. Hindi","doi":"10.32604/sdhm.2021.016495","DOIUrl":"https://doi.org/10.32604/sdhm.2021.016495","url":null,"abstract":"Traditional bridge monitoring systems often require wired connections between sensors, a data acquisition system, and data center. The use of extension wires, conduits, and other costly accessories can dramatically increase the total cost of bridge monitoring. With the development of wireless technologies and the notable cost benefits, many researchers have been integrating wireless networks into bridge monitoring system. In this study, a wireless bridge monitoring system has been developed based on the Sub-1 GHz network. The main functional components of this system include sensors, wireless nodes, gateway and data center. Wireless nodes can convert analog signals obtained from the sensors to digital signals, then transmit the collected data to the gateway using the Sub1 GHz network. The gateway receives and sorts data from different wireless nodes and then forwards these data to the data center wirelessly. All collected data are processed in the data center using the data processing software developed in this study. In order to validate the performance of the wireless system developed in this study, a steel girder bridge was monitored in the field during the concrete deck construction. The field results were also compared with the theoretical values obtained from finite element models to ensure the accuracy and reliability of the wireless system. The results indicate that the wireless bridge monitoring system developed in this study is effective and affordable. The Sub-1 GHz network can be a better solution for bridges with complicated site conditions because of the extended data transmission distance. Although the power consumption can be controlled by using low-power consumption components, including the power control in software design can also dramatically reduce the system’s power consumption.","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69902601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Damage Detection in CFST Column by Simulation of Ultrasonic Waves Using STFT-Based Spectrogram and Welch Power Spectral Density Estimate","authors":"N. K. Mutlib, M. N. Ismael, S. Baharom","doi":"10.32604/sdhm.2021.010725","DOIUrl":"https://doi.org/10.32604/sdhm.2021.010725","url":null,"abstract":"","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69901643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization and Prediction of Nonlinear Stress-Strain Relation of Geostructures for Seismic Monitoring","authors":"A. Namdar","doi":"10.32604/SDHM.2021.011127","DOIUrl":"https://doi.org/10.32604/SDHM.2021.011127","url":null,"abstract":"The nonlinearity of the strain energy at an interval period of applying seismic load on the geostructures makes it difficult for a seismic designer to makes appropriate engineering judgments timely. The nonlinear stress and strain analysis of an embankment is needed to evaluate by using a combination of suitable methods. In this study, a large-scale geostructure was seismically simulated and analyzed using the nonlinear finite element method (NFEM), and linear regression method which is a soft computing technique (SC) was applied for evaluating the results of NFEM, and it supports engineering judgment because the design of the geostructures is usually considered to be an inaccurate process owing to high nonlinearity of the large-scale geostructures seismic response and such nonlinearity may induce the complexity for decision making in geostructures seismic design. The occurrence of nonlinear stress and nonlinear strain probability distribution can be observed and density of stress and strain are predicted by using the histogram. The results of both the simulation from the NFEM and the linear regression method confirm the nonlinearity of strain energy and stress behavior have a close value of R and root-mean-square error (RMSE). The linear regression and histogram simulation shows the accuracy of NFEM results. The outcome of this study guides to improve engineering judgment quality for seismic analysis of an embankment through validating results of NFEM by employing appropriate soft computing techniques.","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69901676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}