Journal of Molecular Signaling最新文献

筛选
英文 中文
Caspase-3 mediated release of SAC domain containing fragment from Par-4 is necessary for the sphingosine-induced apoptosis in Jurkat cells. Caspase-3介导的Par-4中含有SAC结构域片段的释放是鞘氨醇诱导Jurkat细胞凋亡的必要条件。
Journal of Molecular Signaling Pub Date : 2013-02-27 DOI: 10.1186/1750-2187-8-2
Faisal Thayyullathil, Siraj Pallichankandy, Anees Rahman, Jaleel Kizhakkayil, Shahanas Chathoth, Mahendra Patel, Sehamuddin Galadari
{"title":"Caspase-3 mediated release of SAC domain containing fragment from Par-4 is necessary for the sphingosine-induced apoptosis in Jurkat cells.","authors":"Faisal Thayyullathil,&nbsp;Siraj Pallichankandy,&nbsp;Anees Rahman,&nbsp;Jaleel Kizhakkayil,&nbsp;Shahanas Chathoth,&nbsp;Mahendra Patel,&nbsp;Sehamuddin Galadari","doi":"10.1186/1750-2187-8-2","DOIUrl":"https://doi.org/10.1186/1750-2187-8-2","url":null,"abstract":"<p><strong>Background: </strong>Prostate apoptosis response-4 (Par-4) is a tumor-suppressor protein that selectively activates and induces apoptosis in cancer cells, but not in normal cells. The cancer specific pro-apoptotic function of Par-4 is encoded in its centrally located SAC (Selective for Apoptosis induction in Cancer cells) domain (amino acids 137-195). The SAC domain itself is capable of nuclear entry, caspase activation, inhibition of NF-κB activity, and induction of apoptosis in cancer cells. However, the precise mechanism(s) of how the SAC domain is released from Par-4, in response to apoptotic stimulation, is not well explored.</p><p><strong>Results: </strong>In this study, we demonstrate for the first time that sphingosine (SPH), a member of the sphingolipid family, induces caspase-dependant cleavage of Par-4, leading to the release of SAC domain containing fragment from it. Par-4 is cleaved at the EEPD131G site on incubation with caspase-3 in vitro, and by treating cells with several anti-cancer agents. The caspase-3 mediated cleavage of Par-4 is blocked by addition of the pan-caspase inhibitor z-VAD-fmk, caspase-3 specific inhibitor Ac-DEVD-CHO, and by introduction of alanine substitution for D131 residue. Moreover, suppression of SPH-induced Akt dephosphorylation also abrogated the caspase dependant cleavage of Par-4.</p><p><strong>Conclusion: </strong>Evidence provided here shows that Par-4 is cleaved by caspase-3 during SPH-induced apoptosis. Cleavage of Par-4 leads to the generation of SAC domain containing fragment which may possibly be essential and sufficient to induce or augment apoptosis in cancer cells.</p>","PeriodicalId":35051,"journal":{"name":"Journal of Molecular Signaling","volume":"8 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2013-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1750-2187-8-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31267059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
Consequences of nongenomic actions of estradiol on pathogenic genital tract response. 雌二醇对致病性生殖道反应的非基因组作用的后果。
Journal of Molecular Signaling Pub Date : 2013-01-26 DOI: 10.1186/1750-2187-8-1
Paula Solar, Luis Velasquez
{"title":"Consequences of nongenomic actions of estradiol on pathogenic genital tract response.","authors":"Paula Solar,&nbsp;Luis Velasquez","doi":"10.1186/1750-2187-8-1","DOIUrl":"https://doi.org/10.1186/1750-2187-8-1","url":null,"abstract":"<p><p> Estradiol is a steroid hormone that regulates the structure and function of the female reproductive system. In addition to its genomic effects, which are mediated by activated nuclear receptors, estradiol elicits a variety of rapid signaling events independently of transcriptional or genomic regulation. These nongenomic actions influence the milieu of the genital tract, which changes the ability of pathogens to infect the genital tract. This review discusses our current knowledge regarding the mechanisms and relevance of nongenomic estradiol signaling in the genital tract that could change the ability of pathogens to invade epithelial cells. PubMed was searched through January 1980 for papers related to estradiol actions in the ovary, fallopian tube, uterus and cervix. The mechanisms conveying these rapid effects consist of a multitude of signaling molecules and include cross-talk with slower transcriptional actions. The nongenomic actions of estradiol that influence the infectious abilities of pathogens occur either directly on the genital tract cells or indirectly by modulating the local and systemic immune systems. Additional in-depth characterization of the response is required before the normal and pathological reproductive functions of the nongenomic estradiol pathway can be targeted for pharmacological intervention.</p>","PeriodicalId":35051,"journal":{"name":"Journal of Molecular Signaling","volume":"8 1","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2013-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1750-2187-8-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31189232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Defining regulatory and phosphoinositide-binding sites in the human WIPI-1 β-propeller responsible for autophagosomal membrane localization downstream of mTORC1 inhibition. 确定人WIPI-1 β-螺旋桨中负责mTORC1抑制下游自噬体膜定位的调节位点和磷酸肌苷结合位点。
Journal of Molecular Signaling Pub Date : 2012-10-22 DOI: 10.1186/1750-2187-7-16
Anja Gaugel, Daniela Bakula, Anneliese Hoffmann, Tassula Proikas-Cezanne
{"title":"Defining regulatory and phosphoinositide-binding sites in the human WIPI-1 β-propeller responsible for autophagosomal membrane localization downstream of mTORC1 inhibition.","authors":"Anja Gaugel,&nbsp;Daniela Bakula,&nbsp;Anneliese Hoffmann,&nbsp;Tassula Proikas-Cezanne","doi":"10.1186/1750-2187-7-16","DOIUrl":"https://doi.org/10.1186/1750-2187-7-16","url":null,"abstract":"<p><strong>Unlabelled: </strong></p><p><strong>Background: </strong>Autophagy is a cytoprotective, lysosomal degradation system regulated upon induced phosphatidylinositol 3-phosphate (PtdIns(3)P) generation by phosphatidylinositol 3-kinase class III (PtdIns3KC3) downstream of mTORC1 inhibition. The human PtdIns(3)P-binding β-propeller protein WIPI-1 accumulates at the initiation site for autophagosome formation (phagophore), functions upstream of the Atg12 and LC3 conjugation systems, and localizes at both the inner and outer membrane of generated autophagosomes. In addition, to a minor degree WIPI-1 also binds PtdIns(3,5)P2. By homology modelling we earlier identified 24 evolutionarily highly conserved amino acids that cluster at two opposite sites of the open Velcro arranged WIPI-1 β-propeller.</p><p><strong>Results: </strong>By alanine scanning mutagenesis of 24 conserved residues in human WIPI-1 we define the PtdIns-binding site of human WIPI-1 to critically include S203, S205, G208, T209, R212, R226, R227, G228, S251, T255, H257. These amino acids confer PtdIns(3)P or PtdIns(3,5)P2 binding. In general, WIPI-1 mutants unable to bind PtdIns(3)P/PtdIns(3,5)P2 lost their potential to localize at autophagosomal membranes, but WIPI-1 mutants that retained PtdIns(3)P/PtdIns(3,5)P2 binding localized at Atg12-positive phagophores upon mTORC1 inhibition. Both, downregulation of mTOR by siRNA or cellular PtdIns(3)P elevation upon PIKfyve inhibition by YM201636 significantly increased the localization of WIPI-1 at autophagosomal membranes. Further, we identified regulatory amino acids that influence the membrane recruitment of WIPI-1. Exceptional, WIPI-1 R110A localization at Atg12-positive membranes was independent of autophagy stimulation and insensitive to wortmannin. R112A and H185A mutants were unable to bind PtdIns(3)P/PtdIns(3,5)P2 but localized at autophagosomal membranes, although in a significant reduced number of cells when compared to wild-type WIPI-1.</p><p><strong>Conclusions: </strong>We identified amino acids of the WIPI-1 β-propeller that confer PtdIns(3)P or PtdIns(3,5)P2 binding (S203, S205, G208, T209, R212, R226, R227, G228, S251, T255, H257), and that regulate the localization at autophagosomal membranes (R110, R112, H185) downstream of mTORC1 inhibition.</p>","PeriodicalId":35051,"journal":{"name":"Journal of Molecular Signaling","volume":"7 1","pages":"16"},"PeriodicalIF":0.0,"publicationDate":"2012-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1750-2187-7-16","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30995722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
NADPH oxidase mediates the oxygen-glucose deprivation/reperfusion-induced increase in the tyrosine phosphorylation of the N-methyl-D-aspartate receptor NR2A subunit in retinoic acid differentiated SH-SY5Y Cells. 在视黄酸分化的SH-SY5Y细胞中,NADPH氧化酶介导氧-葡萄糖剥夺/再灌注诱导的n-甲基- d -天冬氨酸受体NR2A亚基酪氨酸磷酸化的增加。
Journal of Molecular Signaling Pub Date : 2012-09-08 DOI: 10.1186/1750-2187-7-15
Phillip H Beske, Darrell A Jackson
{"title":"NADPH oxidase mediates the oxygen-glucose deprivation/reperfusion-induced increase in the tyrosine phosphorylation of the N-methyl-D-aspartate receptor NR2A subunit in retinoic acid differentiated SH-SY5Y Cells.","authors":"Phillip H Beske,&nbsp;Darrell A Jackson","doi":"10.1186/1750-2187-7-15","DOIUrl":"https://doi.org/10.1186/1750-2187-7-15","url":null,"abstract":"<p><strong>Background: </strong>Evidence exists that oxidative stress promotes the tyrosine phosphorylation of N-methyl-D-aspartate receptor (NMDAR) subunits during post-ischemic reperfusion of brain tissue. Increased tyrosine phosphorylation of NMDAR NR2A subunits has been reported to potentiate receptor function and exacerbate NMDAR-induced excitotoxicity. Though the effect of ischemia on tyrosine phosphorylation of NMDAR subunits has been well documented, the oxidative stress signaling cascades mediating the enhanced tyrosine phosphorylation of NR2A subunits remain unclear.</p><p><strong>Results: </strong>We report that the reactive oxygen species (ROS) generator NADPH oxidase mediates an oxidative stress-signaling cascade involved in the increased tyrosine phosphorylation of the NR2A subunit in post-ischemic differentiated SH-SY5Y neuroblastoma cells. Inhibition of NADPH oxidase attenuated the increased tyrosine phosphorylation of the NMDAR NR2A subunit, while inhibition of ROS production from mitochondrial or xanthine oxidase sources failed to dampen the post-ischemic increase in tyrosine phosphorylation of the NR2A subunit. Additionally, inhibition of NADPH oxidase blunted the interaction of activated Src Family Kinases (SFKs) with PSD-95 induced by ischemia/reperfusion. Lastly, inhibition of NADPH oxidase also markedly reduced cell death in post-ischemic SH-SY5Y cells stimulated by NMDA.</p><p><strong>Conclusions: </strong>These data indicate that NADPH oxidase has a key role in facilitating NMDAR NR2A tyrosine phosphorylation via SFK activation during post-ischemic reperfusion.</p>","PeriodicalId":35051,"journal":{"name":"Journal of Molecular Signaling","volume":"7 1","pages":"15"},"PeriodicalIF":0.0,"publicationDate":"2012-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1750-2187-7-15","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30889363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
The roles played by highly truncated splice variants of G protein-coupled receptors. G蛋白偶联受体的高度截断剪接变异体所起的作用。
Journal of Molecular Signaling Pub Date : 2012-09-01 DOI: 10.1186/1750-2187-7-13
Helen Wise
{"title":"The roles played by highly truncated splice variants of G protein-coupled receptors.","authors":"Helen Wise","doi":"10.1186/1750-2187-7-13","DOIUrl":"https://doi.org/10.1186/1750-2187-7-13","url":null,"abstract":"<p><p> Alternative splicing of G protein-coupled receptor (GPCR) genes greatly increases the total number of receptor isoforms which may be expressed in a cell-dependent and time-dependent manner. This increased diversity of cell signaling options caused by the generation of splice variants is further enhanced by receptor dimerization. When alternative splicing generates highly truncated GPCRs with less than seven transmembrane (TM) domains, the predominant effect in vitro is that of a dominant-negative mutation associated with the retention of the wild-type receptor in the endoplasmic reticulum (ER). For constitutively active (agonist-independent) GPCRs, their attenuated expression on the cell surface, and consequent decreased basal activity due to the dominant-negative effect of truncated splice variants, has pathological consequences. Truncated splice variants may conversely offer protection from disease when expression of co-receptors for binding of infectious agents to cells is attenuated due to ER retention of the wild-type co-receptor. In this review, we will see that GPCRs retained in the ER can still be functionally active but also that highly truncated GPCRs may also be functionally active. Although rare, some truncated splice variants still bind ligand and activate cell signaling responses. More importantly, by forming heterodimers with full-length GPCRs, some truncated splice variants also provide opportunities to generate receptor complexes with unique pharmacological properties. So, instead of assuming that highly truncated GPCRs are associated with faulty transcription processes, it is time to reassess their potential benefit to the host organism.</p>","PeriodicalId":35051,"journal":{"name":"Journal of Molecular Signaling","volume":"7 1","pages":"13"},"PeriodicalIF":0.0,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1750-2187-7-13","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30871238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 55
Multiple biomarker tissue arrays: A computational approach to identifying protein-protein interactions in the EGFR/ERK signalling pathway. 多种生物标志物组织阵列:一种识别EGFR/ERK信号通路中蛋白-蛋白相互作用的计算方法。
Journal of Molecular Signaling Pub Date : 2012-09-01 DOI: 10.1186/1750-2187-7-14
V Medina Villaamil, G Aparicio Gallego, M Valladares-Ayerbes, I Santamarina Caínzos, L Miguel Antón Aparicio
{"title":"Multiple biomarker tissue arrays: A computational approach to identifying protein-protein interactions in the EGFR/ERK signalling pathway.","authors":"V Medina Villaamil,&nbsp;G Aparicio Gallego,&nbsp;M Valladares-Ayerbes,&nbsp;I Santamarina Caínzos,&nbsp;L Miguel Antón Aparicio","doi":"10.1186/1750-2187-7-14","DOIUrl":"https://doi.org/10.1186/1750-2187-7-14","url":null,"abstract":"<p><strong>Unlabelled: </strong></p><p><strong>Background: </strong>Many studies have demonstrated genetic and environmental factors that lead to renal cell carcinoma (RCC) and that occur during a protracted period of tumourigenesis. It appears suitable to identify and characterise potential molecular markers that appear during tumourigenesis and that might provide rapid and effective possibilities for the early detection of RCC. EGFR activation induces cell cycle progression, inhibition of apoptosis and angiogenesis, promotion of invasion/metastasis, and other tumour promoting activities. Over-expression of EGFR is thought to play an important role in tumour initiation and progression of RCC because up-regulation of EGFR has been associated with high grade cancers and a worse prognosis.</p><p><strong>Methods: </strong>Characterisation of the protein profile interacting with EGFR was performed using the following: an immunohistochemical (IHC) study of EGFR, a comprehensive computational study of EGFR protein-protein interactions, an analysis correlating the expression levels of EGFR with other significant markers in the tumourigenicity of RCC, and finally, an analysis of the utility of EGFR for prognosis in a cohort of patients with renal cell carcinoma.</p><p><strong>Results: </strong>The cases that showed a higher level of this protein fell within the clear cell histological subtype (p = 0.001). The EGFR significance statistic was found with respect to a worse prognosis. In vivo significant correlations were found with PDGFR-β, Flk-1, Hif1-α, proteins related to differentiation (such as DLL3 and DLL4 ligands), and certain metabolic proteins such as Glut5. In silico significant associations gave us a panel of 32 EGFR-interacting proteins (EIP) using the APID and STRING databases.</p><p><strong>Conclusions: </strong>This work summarises the multifaceted role of EGFR in the pathology of RCC, and it identifies EIPs that could help to provide mechanistic explanations for the different behaviours observed in tumours.</p>","PeriodicalId":35051,"journal":{"name":"Journal of Molecular Signaling","volume":"7 1","pages":"14"},"PeriodicalIF":0.0,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1750-2187-7-14","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30872750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Understanding sensitivity to BH3 mimetics: ABT-737 as a case study to foresee the complexities of personalized medicine. 了解BH3模拟物的敏感性:以ABT-737为例研究,以预见个性化医疗的复杂性。
Journal of Molecular Signaling Pub Date : 2012-08-16 DOI: 10.1186/1750-2187-7-12
Vasileios A Stamelos, Charles W Redman, Alan Richardson
{"title":"Understanding sensitivity to BH3 mimetics: ABT-737 as a case study to foresee the complexities of personalized medicine.","authors":"Vasileios A Stamelos,&nbsp;Charles W Redman,&nbsp;Alan Richardson","doi":"10.1186/1750-2187-7-12","DOIUrl":"https://doi.org/10.1186/1750-2187-7-12","url":null,"abstract":"<p><p> BH3 mimetics such as ABT-737 and navitoclax bind to the BCL-2 family of proteins and induce apoptosis through the intrinsic apoptosis pathway. There is considerable variability in the sensitivity of different cells to these drugs. Understanding the molecular basis of this variability will help to determine which patients will benefit from these drugs. Furthermore, this understanding aids in the design of rational strategies to increase the sensitivity of cells which are otherwise resistant to BH3 mimetics. We discuss how the expression of BCL-2 family proteins regulates the sensitivity to ABT-737. One of these, MCL-1, has been widely described as contributing to resistance to ABT-737 which might suggest a poor response in patients with cancers that express levels of MCL-1. In some cases, resistance to ABT-737 conferred by MCL-1 is overcome by the expression of pro-apoptotic proteins that bind to apoptosis inhibitors such as MCL-1. However, the distribution of the pro-apoptotic proteins amongst the various apoptosis inhibitors also influences sensitivity to ABT-737. Furthermore, the expression of both pro- and anti-apoptotic proteins can change dynamically in response to exposure to ABT-737. Thus, there is significant complexity associated with predicting response to ABT-737. This provides a paradigm for the multiplicity of intricate factors that determine drug sensitivity which must be considered for the full implementation of personalized medicine.</p>","PeriodicalId":35051,"journal":{"name":"Journal of Molecular Signaling","volume":"7 1","pages":"12"},"PeriodicalIF":0.0,"publicationDate":"2012-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1750-2187-7-12","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30837326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Signaling in colon cancer stem cells. 结肠癌干细胞中的信号传导。
Journal of Molecular Signaling Pub Date : 2012-08-06 DOI: 10.1186/1750-2187-7-11
Sanchita Roy, Adhip Pn Majumdar
{"title":"Signaling in colon cancer stem cells.","authors":"Sanchita Roy,&nbsp;Adhip Pn Majumdar","doi":"10.1186/1750-2187-7-11","DOIUrl":"https://doi.org/10.1186/1750-2187-7-11","url":null,"abstract":"<p><p> : Colorectal cancer is the fourth most common form of cancer worldwide and ranks third among the cancer-related deaths in the US and other Western countries. It occurs with equal frequency in men and women, constituting 10% of new cancer cases in men and 11% in women. Despite recent advancement in therapeutics, the survival rates from metastatic are less than 5%. Growing evidence supports the contention that epithelial cancers including colorectal cancer, the incidence of which increases with aging, are diseases driven by the pluripotent, self-renewing cancer stem cells (CSCs). Dysregulation of Wnt, Notch, Hedgehog and/or TGF-β signaling pathways that are involved in proliferation and maintenance of CSCs leads to the development of CRC. This review focuses on the signaling pathways relevant for CRC to understand the mechanisms leading to tumor progression and therapy resistance, which may help in the development of therapeutic strategies for CRC.</p>","PeriodicalId":35051,"journal":{"name":"Journal of Molecular Signaling","volume":"7 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2012-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1750-2187-7-11","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30813703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 77
siRNA knockdown of GPR18 receptors in BV-2 microglia attenuates N-arachidonoyl glycine-induced cell migration. BV-2小胶质细胞中GPR18受体的siRNA敲低可减弱n -花生四烯醇甘氨酸诱导的细胞迁移。
Journal of Molecular Signaling Pub Date : 2012-07-26 DOI: 10.1186/1750-2187-7-10
Douglas McHugh, James Wager-Miller, Jeremy Page, Heather B Bradshaw
{"title":"siRNA knockdown of GPR18 receptors in BV-2 microglia attenuates N-arachidonoyl glycine-induced cell migration.","authors":"Douglas McHugh,&nbsp;James Wager-Miller,&nbsp;Jeremy Page,&nbsp;Heather B Bradshaw","doi":"10.1186/1750-2187-7-10","DOIUrl":"https://doi.org/10.1186/1750-2187-7-10","url":null,"abstract":"<p><strong>Unlabelled: </strong></p><p><strong>Background: </strong>Neurons are known to employ the endogenous cannabinoid system to communicate with other cells of the CNS. Endocannabioid signaling recruits microglia toward neurons by engaging cannabinoid CB2 and abnormal cannabidiol (Abn-CBD) receptors. The Abn-CBD receptor is a prominent atypical cannabinoid receptor that had been discriminated by means of various pharmacological and genetic tools but remained to be identified at the molecular level. We recently introduced N-arachidonoyl glycine (NAGly) signaling via GPR18 receptors as an important novel signaling mechanism in microglial-neuronal communication. NAGly is an endogenous, enzymatically oxygenated metabolite of the endocannabinoid N-arachidonoyl ethanolamide (AEA). Our recent studies support strongly two hypotheses; first that NAGly initiates directed microglial migration in the CNS through activation of GPR18, and second that GPR18 is the Abn-CBD receptor. Here we present siRNA knockdown data in further support of these hypotheses.</p><p><strong>Findings: </strong>A GPR18-targetting siRNA pSUPER G418 GFP cDNA plasmid was created and transfected into BV-2 microglia. Successfully transfected GFP+ GPR18 siRNA BV-2 microglia displayed reduced GPR18 mRNA levels and immunocytochemical staining. Cell migration induced by 1 μM concentrations of NAGly, O-1602 and Abn-CBD were significantly attenuated in GFP+ cells.</p><p><strong>Conclusions: </strong>Our data provide definitive evidence that these compounds, characteristic of Abn-CBD receptor pharmacology, are acting via GPR18 in BV-2 microglia. A fuller understanding of the hitherto unidentified cannabinoid receptors such as GPR18; their molecular interactions with endogenous ligands; and how phytocannabinoids influence their signaling is vital if we are to comprehensively assess the function of the endogenous cannabinoid signaling system in human health and disease.</p>","PeriodicalId":35051,"journal":{"name":"Journal of Molecular Signaling","volume":"7 1","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2012-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1750-2187-7-10","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30791509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 39
Tumour promoting and suppressing roles of the atypical MAP kinase signalling pathway ERK3/4-MK5. 非典型MAP激酶信号通路ERK3/4-MK5对肿瘤的促进和抑制作用。
Journal of Molecular Signaling Pub Date : 2012-07-16 DOI: 10.1186/1750-2187-7-9
Sergiy Kostenko, Gianina Dumitriu, Ugo Moens
{"title":"Tumour promoting and suppressing roles of the atypical MAP kinase signalling pathway ERK3/4-MK5.","authors":"Sergiy Kostenko,&nbsp;Gianina Dumitriu,&nbsp;Ugo Moens","doi":"10.1186/1750-2187-7-9","DOIUrl":"10.1186/1750-2187-7-9","url":null,"abstract":"<p><p> Perturbed action of signal transduction pathways, including the mitogen-activated protein (MAP) kinase pathways, is one of the hallmarks of many cancers. While the implication of the typical MAP kinase pathways ERK1/2-MEK1/2, p38MAPK and JNK is well established, recent findings illustrate that the atypical MAP kinase ERK3/4-MK5 may also be involved in tumorigenic processes. Remarkably, the ERK3/4-MK5 pathway seems to possess anti-oncogenic as well as pro-oncogenic properties in cell culture and aninal models. This review summarizes the mutations in the genes encoding ERK3, ERK4 and MK5 that have been detected in different cancers, reports aberrant expression levels of these proteins in human tumours, and discusses the mechanisms by which this pathway can induce senescence, stimulate angiogenesis and invasiveness.</p>","PeriodicalId":35051,"journal":{"name":"Journal of Molecular Signaling","volume":"7 1","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1750-2187-7-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30765465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 39
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信