An Introduction to Thermal Physics最新文献

筛选
英文 中文
Systems of Interacting Particles 相互作用粒子系统
An Introduction to Thermal Physics Pub Date : 2021-01-05 DOI: 10.1093/OSO/9780192895547.003.0008
D. V. Schroeder
{"title":"Systems of Interacting Particles","authors":"D. V. Schroeder","doi":"10.1093/OSO/9780192895547.003.0008","DOIUrl":"https://doi.org/10.1093/OSO/9780192895547.003.0008","url":null,"abstract":"This chapter presents two examples of the application of Boltzmann statistics to systems with nontrivial interactions between particles. The first example is a nonideal gas, treated approximately using a series expansion that we can visualize in terms of simple diagrams. The second example is a model of a ferromagnet as a collection of two-state particles interacting with their nearest neighbors. It is easy to solve this model exactly in one dimension, and to gain a semi-quantitative understanding of why the system magnetizes below a critical temperature in two or three dimensions. The most powerful tool for studying this model, however, is numerical simulation on a computer using a random-sampling algorithm based on the Boltzmann distribution.","PeriodicalId":348442,"journal":{"name":"An Introduction to Thermal Physics","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123888656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boltzmann Statistics 玻耳兹曼统计
An Introduction to Thermal Physics Pub Date : 2021-01-05 DOI: 10.1093/oso/9780192895547.003.0006
D. V. Schroeder
{"title":"Boltzmann Statistics","authors":"D. V. Schroeder","doi":"10.1093/oso/9780192895547.003.0006","DOIUrl":"https://doi.org/10.1093/oso/9780192895547.003.0006","url":null,"abstract":"When a system is held at a fixed temperature, its higher-energy states are less probable than its lower energy states by an amount that depends on how the energy compares to the temperature. The formula that quantifies this idea is called the Boltzmann distribution. This chapter derives the Boltzmann distribution and shows how to use it to predict the thermal behavior of any system whose microscopic states we can enumerate. The examples go beyond the three simple model systems studied already in Chapters 2 and 3 to include detailed properties of gases, stellar spectra, and paramagnetic materials.","PeriodicalId":348442,"journal":{"name":"An Introduction to Thermal Physics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129552579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Second Law 第二定律
An Introduction to Thermal Physics Pub Date : 2021-01-05 DOI: 10.1093/OSO/9780192895547.003.0002
D. V. Schroeder
{"title":"The Second Law","authors":"D. V. Schroeder","doi":"10.1093/OSO/9780192895547.003.0002","DOIUrl":"https://doi.org/10.1093/OSO/9780192895547.003.0002","url":null,"abstract":"Why are so many large-scale processes irreversible, happening in one direction but not the other as time passes? This chapter answers that question using three simple model systems: a collection of two-state particles such as flipped coins or elementary magnetic dipoles; the Einstein model of a solid as a collection of identical quantum oscillators; and a monatomic ideal gas such as helium or argon. For each system we learn to calculate the multiplicity: the number of possible microscopic arrangements. Taking the logarithm of the multiplicity gives the entropy. And the laws of probability then imply the second law of thermodynamics: Entropy tends to increase.","PeriodicalId":348442,"journal":{"name":"An Introduction to Thermal Physics","volume":"39 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120918833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信