{"title":"High Resolution Doppler profiler measurements of turbulence from a profiling body","authors":"P. Rusello, E. Siegel, M. Alford","doi":"10.1109/CWTM.2011.5759562","DOIUrl":"https://doi.org/10.1109/CWTM.2011.5759562","url":null,"abstract":"A Nortek Aquadopp High Resolution (HR) Profiler was mounted on a moored vertical crawling oceanic profiler to determine if measurements made from a moving platform could be utilized to measure turbulence. Initial results are promising for this application but have highlighted potential challenges which must be addressed in the post-processing stage, in particular removal of the profiler motion from the measured velocities. Despite the potential complexity of this process, measurements from a moving body yield correct order of magnitude estimates of turbulence intensity at a study site in the Puget Sound region.","PeriodicalId":345178,"journal":{"name":"2011 IEEE/OES 10th Current, Waves and Turbulence Measurements (CWTM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117103422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance of the nortek Aquadopp Z-Cell Profiler on a NOAA surface buoy","authors":"E. Siegel, R. Riley, K. Grissom","doi":"10.1109/CWTM.2011.5759554","DOIUrl":"https://doi.org/10.1109/CWTM.2011.5759554","url":null,"abstract":"Observations of current velocity in near-surface and near-bottom boundary layers are critically important for many scientific, operational, and engineering applications. Nortek developed the Aquadopp Z-Cell Profiler, a dual-frequency, six-beam acoustic Doppler current profiler, to meet the needs of observing the complete water column velocity profile, including the near-surface or near-bottom currents. The Aquadopp Z-Cell Profiler employs three acoustic beams directed horizontally and spaced equally around the circumference of the profiler with 120 deg spacing between the beams. These beams measure the two-component horizontal currents at the level of the instrument (cell zero), thereby eliminating the common blanking distance associated with standard ADCP's. Near-surface and water column current velocity profile observations from a Z-Cell Profiler mounted on a NOAA NDBC 3 m discus buoy (located in the northern Gulf of Mexico) are compared with current velocity profile measurements from a bottom mounted 600 kHz Nortek AWAC and 600 kHz Teledyne RD Instruments Workhorse acoustic Doppler current profiler. A tidal analysis suggests that velocity data from the horizontal beams (cell zero) are of good quality and consistent in direction and magnitude with the velocity measurements in cells below, with the AWAC and Workhorse velocity, and with theory. Several cases are presented that indicate the measurements in cell zero are important to make independent of velocity lower in the water column in order to correctly characterize the flow regime. Current speed and direction differences between cell zero and lower cells project a horizontal spatial separation of water parcels as much as 20 km/day, with a mean separation of 8.5 km/day.","PeriodicalId":345178,"journal":{"name":"2011 IEEE/OES 10th Current, Waves and Turbulence Measurements (CWTM)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115924053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Error assessment of HF radar-based ocean current measurements: An error model based on sub-period measurement variance","authors":"K. Laws, J. Vesecky, J. Paduan","doi":"10.1109/CWTM.2011.5759527","DOIUrl":"https://doi.org/10.1109/CWTM.2011.5759527","url":null,"abstract":"Data from CODAR-type ocean current sensing radar systems are used here to evaluate the performance of an error indicator provided as part of the available radar data. Investigations are based on data from pairs of radar systems with over-water baselines. Approximately year-long time series are used. The radar data are the typical hourly radial measurements provided by CODAR systems. These measurements are actually the median (or mean) of anywhere between 2 and 7 sub-hourly measurements collected by the radar system. The error indicator under examination is based on the standard deviation (std) of the sub-hourly radials, divided by the square root of the number of sub-hourly radials. These values are recorded in the hourly data files produced by recent versions of the CODAR data processing software. Examination of the model demonstrates a positive correlation between the model and the measured baseline difference std for all baseline pairs examined. The predictive capability of the error model is demonstrated by presenting its use as a data discriminator and by examination of time series of sliding boxcar samples of radar data. Baseline difference std for data rejected by a threshold based on the error model is shown to be significantly higher than for the data retained. The results presented here demonstrate potential to improve assessment of the HF radar current measurement uncertainty. Such improvement has potential to benefit all applications of HF radar data, including for example, Lagrangian particle tracking and surface current assimilation into numerical models.","PeriodicalId":345178,"journal":{"name":"2011 IEEE/OES 10th Current, Waves and Turbulence Measurements (CWTM)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123676120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spar buoy platform for water wave, turbulence and underwater electric field sensors","authors":"C. Bradley, W. Venezia","doi":"10.1109/CWTM.2011.5759551","DOIUrl":"https://doi.org/10.1109/CWTM.2011.5759551","url":null,"abstract":"During the summer of 2010 the US Navy's Center for Innovation in Ship Design (CISD) at the Naval Surface Warfare Center Carderock Division (NSWCCD) supported three interns to work at the Navy's South Florida Ocean Measurement Facility (SFOMF). For these summer internships, funding was provided by the Naval Research Enterprise Intern Program (NREIP). NREIP, sponsored by the Office of Naval Research, allows college students to experience a 10-week internship relevant to their science and engineering major. The program provides students exposure to the everyday practice of engineering and research at DOD laboratories across the country. The Florida Atlantic University Department of Ocean Engineering interns worked in a team to tackle an ocean engineering buoy design and technology project.","PeriodicalId":345178,"journal":{"name":"2011 IEEE/OES 10th Current, Waves and Turbulence Measurements (CWTM)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127616531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. D. de Schipper, R.C. de Zeeuw, S. de Vries, M. Stive, J. Terwindt
{"title":"Horizontal ADCP measurements of waves and currents in the very nearshore","authors":"M. D. de Schipper, R.C. de Zeeuw, S. de Vries, M. Stive, J. Terwindt","doi":"10.1109/CWTM.2011.5759545","DOIUrl":"https://doi.org/10.1109/CWTM.2011.5759545","url":null,"abstract":"Hydrodynamic measurements of the very nearshore are valuable, but often difficult to obtain. Large amounts of bubbles due to wave breaking and complex installation complicate the use of acoustic instruments in this zone. This paper presents measurements obtained by a horizontal looking ADCP (hADCP) installed in the very nearshore to measure waves and wave currents. The observations are separated into the various timescales ranging from high frequency orbital motion to very low frequency oscillations and mean flow. Results reveal the presence of significant very low frequency oscillations and the potential of a hADCP to capture wave transformation in the nearshore.","PeriodicalId":345178,"journal":{"name":"2011 IEEE/OES 10th Current, Waves and Turbulence Measurements (CWTM)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128261492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Thwaites, R. Krishfield, M. Timmermans, J. Toole, A. Williams
{"title":"Noise in Ice-Tethered Profiler and McLane Moored Profiler velocity measurements","authors":"F. Thwaites, R. Krishfield, M. Timmermans, J. Toole, A. Williams","doi":"10.1109/CWTM.2011.5759553","DOIUrl":"https://doi.org/10.1109/CWTM.2011.5759553","url":null,"abstract":"In order to measure current profiles, and most recently, turbulent fluxes, moored profiling instrument have been equipped with acoustic travel-time current sensors. Noise in the measured currents has exceeded expectations. A customized Falmouth Scientific acoustic current sensor on a McLane Moored Profiler (MMP) has a standard deviation of measured velocity that is 4.4% of the profiler velocity in still water and a modified Modular Acoustic Velocity Sensor (MAVS) on an MMP and an Ice-Tethered Profiler (ITP) has a standard deviation of 4.6% of profiler velocity. Both of these sensors measure velocity along four acoustic paths and the water velocities were computed neglecting their downstream paths.","PeriodicalId":345178,"journal":{"name":"2011 IEEE/OES 10th Current, Waves and Turbulence Measurements (CWTM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131797921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coherent marine radar mapping of ocean surface currents and directional wave spectra","authors":"D. Trizna","doi":"10.1109/CWTM.2011.5759526","DOIUrl":"https://doi.org/10.1109/CWTM.2011.5759526","url":null,"abstract":"A coherent marine radar with 3-m resolution has been developed that measures the radial component of the orbital wave velocity of ocean waves, as well as the mean radial ocean surface velocity. This radar provides a direct measure of the ocean wave spectrum by means of 3D-FFT processing of a sequence of radial velocity images collected at a 0.8 Hz image rate. Typically, 512 images are used, covering periods of the order of ten minutes, allowing a modest number of wave groups to be measured. The mean radial velocity map is obtained by a superposition of all radial velocity images collected, allowing wave patterns to blend to the mean, resulting in a map of mean currents. A pair of such radars operated at a coastal site, separated by a few hundred meters along the coastline, could allow the combination of radial components to be combined into a mean current vector field. Results of an experiment run during the offshore passage of Hurricane Ida in 2009 are presented, collected at the U.S. Army Corps of Engineers Field Research Facility, Duck, N.C.","PeriodicalId":345178,"journal":{"name":"2011 IEEE/OES 10th Current, Waves and Turbulence Measurements (CWTM)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121366027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Field testing of a new ADCP","authors":"J. Mullison, P. Wanis, D. Symonds","doi":"10.1109/CWTM.2011.5759531","DOIUrl":"https://doi.org/10.1109/CWTM.2011.5759531","url":null,"abstract":"Since its introduction in 1992, the Teledyne RDI Instruments (TRDI) Workhorse ADCP has become ubiquitous, with literally thousands of systems deployed in nearly every body of water on earth. While the measurement itself remains relatively unchanged, in the intervening years the use of the measurements has changed to an extraordinary extent. Originally a novel way to measure currents sorely in need of proving and acceptance by the research community, ADCP measurements are now the de facto standard for current measurement. What began as a useful tool for academic research continues in that role, but has also become standard equipment for real time decision making. ADCPs are now routinely used to measure river discharge and to aid flood control engineers in managing river levels. Since a terrible accident occurred in Tampa Bay, ADCPs now provide current information in near real-time to the pilots and captains of large vessels as they ply many of the world's major ports and waterways. Because offshore platforms cannot safely operate in the large currents of the Gulf of Mexico's Loop Current and the Eddies it generates, ADCPs play a critical role on all offshore platforms in the deep Gulf of Mexico. The presence and trajectories of these high Gulf of Mexico currents are forecast with great accuracy, the ADCPs real utility comes in determining when they are no longer affecting the rig. ADCPs provide information on an hourly basis in near real time from the TAO/TRITON array for climate forecasting. Returned Signal Strength Intensity data, originally provided strictly as an ancillary quality control parameter, has developed into a useful tool for studies as diverse as the diel migration of zooplankton to aid in creating optimal harbor designs based on sediment transport patterns in the area.","PeriodicalId":345178,"journal":{"name":"2011 IEEE/OES 10th Current, Waves and Turbulence Measurements (CWTM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132583241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}