2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)最新文献

筛选
英文 中文
Integrity-constrained Factor Graph Optimization for GNSS Positioning GNSS定位的完整性约束因子图优化
2023 IEEE/ION Position, Location and Navigation Symposium (PLANS) Pub Date : 2023-04-24 DOI: 10.1109/PLANS53410.2023.10140009
Xiao Xia, L. Hsu, W. Wen
{"title":"Integrity-constrained Factor Graph Optimization for GNSS Positioning","authors":"Xiao Xia, L. Hsu, W. Wen","doi":"10.1109/PLANS53410.2023.10140009","DOIUrl":"https://doi.org/10.1109/PLANS53410.2023.10140009","url":null,"abstract":"The concept of global navigation satellite system (GNSS) integrity refers to the measure of trust of the GNSS positioning solution, which is vital for safety-critical applications such as aviation and autonomous driving. While integrity monitoring was firstly introduced and widely applied in the GNSS aviation field, it is not suitable for GNSS positioning in urban scenarios due to unique circumstances such as limited satellite visibility, strong multipath and non-line-of-sight (NLOS) effects. For example, the direct exclusion of the GNSS multipath and NLOS would significantly degrade the geometry constraints, thus leading to highly conservative integrity monitoring (IM). As a result, the limited GNSS measurement redundancy and the inaccurate measurement uncertainty modeling in urban canyons will severely degrade the performance of both the GNSS positioning and integrity monitoring. To alleviate these issues, this paper proposed an integrity-constrained factor graph optimization (FGO) for GNSS positioning with the help of switchable constraints. Compared to the conventional GNSS IM methods which consider measurements in single epoch or two successive epochs, the proposed method improves the measurement redundancy by the factor graph structure. Meanwhile, the switch variable, which is introduced by switchable constraints and connected with each pseudorange measurement, can not only estimate the measurement uncertainties, but also satisfying the Chi-square testing of the conventional fault detection and exclusion (FDE) while maintaining satellite geometry. In particular, the calculated protection levels consider the effect of switch variables, hence bound the position error more accurately. The performance of this proposed method is evaluated on open-sky dataset with manually injected biases with gaussian random noise.","PeriodicalId":344794,"journal":{"name":"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133248718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrity with Extraction Faults in LiDAR-Based Urban Navigation for Driverless Vehicles 基于lidar的无人驾驶汽车城市导航完整性与故障提取
2023 IEEE/ION Position, Location and Navigation Symposium (PLANS) Pub Date : 2023-04-24 DOI: 10.1109/PLANS53410.2023.10140132
Kana Nagai, Yihe Chen, M. Spenko, R. Henderson, B. Pervan
{"title":"Integrity with Extraction Faults in LiDAR-Based Urban Navigation for Driverless Vehicles","authors":"Kana Nagai, Yihe Chen, M. Spenko, R. Henderson, B. Pervan","doi":"10.1109/PLANS53410.2023.10140132","DOIUrl":"https://doi.org/10.1109/PLANS53410.2023.10140132","url":null,"abstract":"This paper examines the safety of LiDAR-based navigation for driverless vehicles and aims to reduce the risk of extracting information from undesired obstacles. We define the faults of a LiDAR navigation system, derive the integrity risk equation, and suggest landmark environments to reduce the risk of fault-free position error and data association faults. We also present a method to quantify feature extraction risk using reflective tape on desired landmarks to enhance the intensity of returned signals. The high-intensity returns are used in feature extraction decisions between obstacles and pre-defined landmarks using the Neyman-Pearson Lemma. Our experiments demonstrate that the probability of incorrect extraction is below 10−14, and the method is sufficient to ensure safety.","PeriodicalId":344794,"journal":{"name":"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133441144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulations using LEO-PNT systems: A Brief Survey 利用LEO-PNT系统进行模拟:简要综述
2023 IEEE/ION Position, Location and Navigation Symposium (PLANS) Pub Date : 2023-04-24 DOI: 10.1109/PLANS53410.2023.10140118
F. Prol, S. Kaasalainen, E. Lohan, M. Z. H. Bhuiyan, J. Praks, H. Kuusniemi
{"title":"Simulations using LEO-PNT systems: A Brief Survey","authors":"F. Prol, S. Kaasalainen, E. Lohan, M. Z. H. Bhuiyan, J. Praks, H. Kuusniemi","doi":"10.1109/PLANS53410.2023.10140118","DOIUrl":"https://doi.org/10.1109/PLANS53410.2023.10140118","url":null,"abstract":"As the whole space segment of satellites in low Earth orbits (LEO) grows, simulations of positioning, navigation, and timing (PNT) through LEO satellites are needed to understand the possible gains that the upcoming satellite missions can offer to global navigation satellite systems (GNSS). The simulations do not only help to forecast the optimal GNSS future advancements, but also guide us on how to implement the most optimized PNT missions. In the most recent years, several simulation tools have focused on broadcast orbit models, precise orbit determination of LEO satellites, signal structure designs, atmospheric models, constellation optimization strategies, satellite clock implementations, and positioning integration with distinct sensors. In this work, we overview most of the latest developments found in the literature to define the status and challenges of LEO- PNT system simulations.","PeriodicalId":344794,"journal":{"name":"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114017412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
5G Positioning Reference Signal Configuration for Integrated Terrestrial/Non-Terrestrial Network Scenario 地面/非地面综合组网场景下5G定位参考信号配置
2023 IEEE/ION Position, Location and Navigation Symposium (PLANS) Pub Date : 2023-04-24 DOI: 10.1109/PLANS53410.2023.10140024
Alejandro Gonzalez-Garrido, J. Querol, S. Chatzinotas
{"title":"5G Positioning Reference Signal Configuration for Integrated Terrestrial/Non-Terrestrial Network Scenario","authors":"Alejandro Gonzalez-Garrido, J. Querol, S. Chatzinotas","doi":"10.1109/PLANS53410.2023.10140024","DOIUrl":"https://doi.org/10.1109/PLANS53410.2023.10140024","url":null,"abstract":"The Fifth Generation (5G) New Radio offers a new Positioning, Navigation, and Timing (PNT) service with larger signal bandwidth and higher frequency carriers than previous generations, delivering more accurate measurements. This allows other vertical industries to benefit from this feature, opening up new possibilities. Furthermore, the 5G network includes Non-Terrestrial Network (NTN) elements such as Unmanned Aerial Vehicle (UAV), High-Altitude Platform Systems (HAPS), and satellites, which are gaining significant attention from the industry to allow for global communication. The future 6G aims to create a single network entity with multiple connectivity layers for all devices in all scenarios. Therefore, when combining both aspects of the 5G networks, the PNT service, and the NTN, there are several benefits such as: an independent and complete communication and navigation system under a single network, higher accuracy on the PNT solution than previous generation, global coverage for join navigation and communication, higher resilience on the positioning estimation, or new services offered. However, this is not free of challenges, as it is expected to achieve an accuracy, at least, similar to Global Navigation Satellite System (GNSS). One of the challenges is the multiplexing of the data and positioning service using a single infrastructure such a satellite. This paper has the purpose of analysing the effect in the accuracy of a delay estimator when a satellite constellation send a Positioning Reference Signal (PRS). Assuming that all satellites share the same frequency carrier and are synchronised between them. This 5G PRS main characteristic is its flexibility in terms of resource usage such as bandwidth, resource element density, symbols periodicity, a muting scheme, etc. This flexibility will be exploited in this paper to get a UE capable to estimate the Downlink Observed Time Difference of Arrival (DL-OTDoA) of the signal. Two challenges are present in this work, both are related to the characteristics of the RF channel between the Next Generation Base Station (gNB) and the User Equipment (UE): the first one is how the UE will cope with the high Doppler shift due to the high speed of the Low Earth Orbit (LEO) gNB increasing the Inter-Carrier Interference (ICI); and the second challenge is the effect of variable delay between OFDM symbols in the same slot and transmitter, increasing the effect of Intersymbol Interference (ISI). The contribution of the authors on this paper is the analysis of different PRS configuration that keeps a low interfere level between the moving gNBs. The result of this research highlight the impact that the length in number of subcarriers and number of OFDM symbol has in the accuracy of the delay estimation. It shows a trade-off in the constellation design, as a higher number of satellites in visibility also increase the ICI and ISI.","PeriodicalId":344794,"journal":{"name":"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123861968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Massive Differencing of GNSS Pseudorange Measurements GNSS伪距测量的巨大差异
2023 IEEE/ION Position, Location and Navigation Symposium (PLANS) Pub Date : 2023-04-24 DOI: 10.1109/PLANS53410.2023.10139935
Helena Calatrava, D. Medina, P. Closas
{"title":"Massive Differencing of GNSS Pseudorange Measurements","authors":"Helena Calatrava, D. Medina, P. Closas","doi":"10.1109/PLANS53410.2023.10139935","DOIUrl":"https://doi.org/10.1109/PLANS53410.2023.10139935","url":null,"abstract":"Global Navigation Satellite Systems (GNSS) is a popular positioning solution able to provide high accuracy, integrity, reliability and high coverage. GNSS performance may be enhanced through aiding systems such as Differential GNSS (DGNSS), which aims to mitigate disruptive sources of error by using corrections sent from a reference station. In this paper, we investigate a method that provides performance results comparable to those by DGNSS without the need for a reference station. We propose the Massive User-Centric Single Difference (MUCSD) algorithm, which leverages a set of collaborative receivers exchanging observables and, potentially, their noisy estimates of position and clock bias. MUCSD is implemented as an iterative weighted least squares (WLS) estimator and its lower accuracy bound, as given by the Cramér-Rao Bound (CRB), is derived as a performance benchmark for the WLS solution. Simulation results are provided as a function of the number of collaborative users and the exchanged information uncertainty. Results show that, without having to access costly-to-maintain reference stations, MUCSD asymptotically outperforms DGNSS as the number of collaborative receivers grows.","PeriodicalId":344794,"journal":{"name":"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121285388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
GPS-denied Vehicle Localization for Augmented Reality Using a Road-Aided Particle Filter and RGB Camera 使用道路辅助粒子滤波和RGB相机的增强现实中gps拒绝车辆定位
2023 IEEE/ION Position, Location and Navigation Symposium (PLANS) Pub Date : 2023-04-24 DOI: 10.1109/PLANS53410.2023.10140123
Tomihisa Welsh, Sean M. Marks, Alex Pronschinske
{"title":"GPS-denied Vehicle Localization for Augmented Reality Using a Road-Aided Particle Filter and RGB Camera","authors":"Tomihisa Welsh, Sean M. Marks, Alex Pronschinske","doi":"10.1109/PLANS53410.2023.10140123","DOIUrl":"https://doi.org/10.1109/PLANS53410.2023.10140123","url":null,"abstract":"Vehicle localization and navigation in a GPS-denied or GPS-degraded environment is a common use case in both civilian and military applications. Augmented reality (AR) applications in particular require a high level of localization accuracy to be perceptually convincing. In this paper we discuss our experimental results implementing a complete, working navigation system for vehicular AR, which is able to maintain high localization accuracy in situations where GPS loss occurs for significant periods of time. We have implemented a hybrid state filter that is able to considerably improve GPS-denied dead-reckoning solutions by merging the output of an Unscented Kalman Filter (UKF), or any off the shelf pose solution with our map-corrected particle filter. The solution is initialized with a known starting location and subsequently corrects the GPS-denied pose solution by performing a “road-aiding” correction using a distance-transform metric derived from an OpenStreetMaps (OSM) map. A calibrated camera provides RGB input to a semantic segmentation network that determines the location of the road. The geometry of the labelling helps the system decide whether the vehicle is on or off road and subsequently whether the map correction can be applied. Our experimental results show a marked improvement in overall accuracy under GPS-denied conditions over a purely dead-reckoning INS solution on a truck mounted system on public roads. To demonstrate the robustness of our system, we drove for 112 minutes GPS-denied, achieving a median positional error of 5 meters and a median heading error of 28 mrad. This degree of accuracy supported consistent and perceptually convincing AR.","PeriodicalId":344794,"journal":{"name":"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116614527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Threat Analysis of Position, Navigation, and Timing for Highly Automated Vehicles 高度自动化车辆的位置、导航和定时威胁分析
2023 IEEE/ION Position, Location and Navigation Symposium (PLANS) Pub Date : 2023-04-24 DOI: 10.1109/PLANS53410.2023.10140072
R. R. Khan, A. Hanif, Q. Ahmed
{"title":"Threat Analysis of Position, Navigation, and Timing for Highly Automated Vehicles","authors":"R. R. Khan, A. Hanif, Q. Ahmed","doi":"10.1109/PLANS53410.2023.10140072","DOIUrl":"https://doi.org/10.1109/PLANS53410.2023.10140072","url":null,"abstract":"This paper focuses on threat and vulnerability analysis using a cooperative navigation strategy for highly automated vehicles operating at smart intersections. This work considers highly automated vehicles (HAVs) to operate simultaneously with connected but non-cooperative vehicles. The proposed work uses the beyond visual range information to reduce vulnerable situations. The safety of Vulnerable road users and the framework of Cooperative navigation is accomplished by using the data from the Road-Side Units (RSU) and On-board Units (OBU). Signalized intersection scenario uses information from the RSU, OBU, Autonomous Intersection Management (AIM) system, and Smart Traffic Lights (STL). This work presents the attack trees of the sensors used in automotive industries to calculate Position, Navigation, and Timing (PNT) solutions. This paper also presents systems Failure Mode and Effect Analysis (FMEA) to see the hazards related to the attack on the sensor, its effect on the subsystems, and the PNT solutions outcome. Threats and vulnerabilities are further validated by the design and test of the cooperative navigation algorithm and their quantitative results. Safety results are also used to generate the Threat Assessment and Risk Analysis (TARA) matrix for quantities analysis. The presented threat and vulnerability analysis are the near future requirement where the vehicle depends on onboard sensors and utilizes information from infrastructure devices. Jamming of infrastructure devices and interference into the OBU is enforced to evaluate the cooperative navigation framework in vulnerable situations occurring at the intersection. The results presented in this work will help enhance safety at smart intersections and drive attention toward more fatal scenarios. A literature survey was conducted to generate the relationship between the sensors and the subsystem shown in figure 2. Further analyses were done to develop the link between vulnerabilities and threats associated with sensors, shown in figure 3. Threats and vulnerabilities on cooperative autonomous driving system risk analysis through Attack trees that were developed based on literature review. Figure 4 to 9 shows the attack tree that defines the sensors' vulnerabilities that lead to threats. Figure 10 shows the FMEA of HAVs that established the link between sensors with the subsystem. Since errors generated in each subsystem will lead to errors in PNT solutions, Therefore figure 10 shows the link between the affected PNT solution with threats associated with the faulty solution. To enhance safety, a cooperative navigation framework is used to validate the scenario and threat risk analysis based on the literature review in relation to subsystems, sensors, threats, and vulnerabilities as mentioned in figures 2 and 3. Multiple threat scenarios were simulated and results of separation between ego vehicle and actor vehicles were presented in figures 12, 13, and 14. Figures 12, 13, and 14 show the","PeriodicalId":344794,"journal":{"name":"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123695828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchical Primitive and Semantics aided Scan Context for place recognition using LiDAR and Monocular Image 利用激光雷达和单目图像进行位置识别的分层原语和语义辅助扫描上下文
2023 IEEE/ION Position, Location and Navigation Symposium (PLANS) Pub Date : 2023-04-24 DOI: 10.1109/PLANS53410.2023.10140041
M. Ai, Ilyar Asl Sabbaghian Hokmabadi, Chrysostomos Minaretzis, N. El-Sheimy
{"title":"Hierarchical Primitive and Semantics aided Scan Context for place recognition using LiDAR and Monocular Image","authors":"M. Ai, Ilyar Asl Sabbaghian Hokmabadi, Chrysostomos Minaretzis, N. El-Sheimy","doi":"10.1109/PLANS53410.2023.10140041","DOIUrl":"https://doi.org/10.1109/PLANS53410.2023.10140041","url":null,"abstract":"Indoor localization involves a challenging and essential task of recognizing places, which has been approached through multi-sensor solutions. However, methods based on a single level of features and homogenous features suffer from ambiguity and lack robustness to changes in environments and viewpoint. To address this challenge, we propose hierarchical primitive, and semantics aided scan context that uses a hierarchical feature comprising primitives and point-level features based on a coupled LiDAR and visual camera system. The proposed feature provides a combination of local and global description, incorporating their advantages while balancing their individual drawbacks. Planar primitives from both image and point clouds are detected for coarse recognition and selection of similar candidates, improving the independence of viewpoint and scenario similarity. Point descriptors, including scan context and SIFT, are then obtained for stage of fine recognition within the previous candidates. The results are evaluated using one real-world indoor dataset. Experimental results demonstrate that the proposed feature descriptor achieves accurate place recognition at the state of the art level, compared to the original scan context descriptor.","PeriodicalId":344794,"journal":{"name":"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124909138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assisted NMA Proof of Concept on Android Smartphones 协助NMA在Android智能手机上的概念验证
2023 IEEE/ION Position, Location and Navigation Symposium (PLANS) Pub Date : 2023-04-24 DOI: 10.1109/PLANS53410.2023.10139953
C. O'Driscoll, J. Winkel, I. Fernández‐Hernández
{"title":"Assisted NMA Proof of Concept on Android Smartphones","authors":"C. O'Driscoll, J. Winkel, I. Fernández‐Hernández","doi":"10.1109/PLANS53410.2023.10139953","DOIUrl":"https://doi.org/10.1109/PLANS53410.2023.10139953","url":null,"abstract":"Navigation Message Authentication (NMA) is a technique to protect GNSS navigation messages by cryptographically signing them. Cell phone based GNSS receivers, which account for by far the largest segment of the GNSS market by user numbers, are typically unable to take advantage of NMA due to the their low rate of navigation message decoding. Assisted NMA (ANMA) turns the NMA concept on its head: the cell phone decodes only a subset of the navigation messages, but verifies that the cryptographic signatures in the decoded messages are authentic using an alternative internet-based source of data that provides the required information with some delay. In this paper we present a proof of concept implementation of ANMA, using the Android raw measurements API, the Galileo Open Service NMA (OSNMA) and the Galmon server to obtain the true navigation data. We test the implementation in a number of static and dynamic environments and demonstrate the feasibility of the concept. We also note some gaps that would need to be filled for the ANMA concept to be viable. Most notably the low and unpredictable rate of I/NAV message decoding within the cell phone is something that would need to be addressed.","PeriodicalId":344794,"journal":{"name":"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128312979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Low-Complexity Multipath Mitigation Technique Based on Multi-Correlator Structures 基于多相关器结构的低复杂度多径缓解技术
2023 IEEE/ION Position, Location and Navigation Symposium (PLANS) Pub Date : 2023-04-24 DOI: 10.1109/PLANS53410.2023.10140016
Christian Siebert, A. Konovaltsev, M. Meurer
{"title":"Low-Complexity Multipath Mitigation Technique Based on Multi-Correlator Structures","authors":"Christian Siebert, A. Konovaltsev, M. Meurer","doi":"10.1109/PLANS53410.2023.10140016","DOIUrl":"https://doi.org/10.1109/PLANS53410.2023.10140016","url":null,"abstract":"Multipath propagation is still a major source of error in global navigation satellite systems (GNSSs), especially in urban environments. Conventional GNSS receivers provide under such conditions only a degraded accuracy. At the same time, applying an effective but computationally complex multipath mitigation algorithm potentially exceeds cost or energy consumption requirements. Therefore, a low-complexity multipath mitigation technique is proposed in this paper. It relies on a multi-correlator structure with an Extended Kalman Filter (EKF) replacing the conventional delay locked loop (DLL) for the code tracking. Multipath resilience is achieved by incorporating the radio propagation channel between satellite and user in the measurement model, inherently accounting for reflected signal replicas. In order to reduce complexity, the effect of the number and distribution of the correlators used has been investigated. It turned out, that even with a very low number of correlators, a high multipath mitigation capability is maintained. The results have been validated with actual measurement data.","PeriodicalId":344794,"journal":{"name":"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116657717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信